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Abstract

Atomic physics experiments with ultracold matter require stable and narrow-
linewidth lasers. In this ten-week Bachelor’s project a tunable diode laser in
Littrow configuration [1] for cooling and trapping strontium atoms at 689 nm
was assembled, optimized and characterized. In the beginning, I discuss the the-
ory of lasers with special focus on semiconductor laser diodes as well as blazed
di↵raction gratings to understand the Littrow and Littman design. Moreover,
I report on the setup of my laser system and explain a PID temperature con-
troller and its optimization to achieve long-term stability. To maximize the fiber
coupling e�ciency, the mode of the beam is shaped with an anamorphic prism
pair for which a formula in ray optics is derived. For continuously scanning the
laser’s frequency, the current is coupled to a feed-forward controller and a mode-
hop-free tuning range of (15.3 ± 0.05) GHz was obtained by observation with a
confocal cavity. At last, the laser’s linewidth is measured by the transmission
through a cavity as well as by the analysis of a heterodyne beatnote signal. From
the latter technique a linewidth at Full Width at Half Maximum (FWHM) of
�⌫ = (127.8± 14.4) kHz for a measurement time of T = 100 µs results.
The project was done in the group of Prof. Dr. Immanuel Bloch under supervi-
sion of Dr. Sebastian Blatt in the new strontium lab at the MPQ.
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Chapter 1

Introduction

Since the invention of the first laser in 1960 [2], it has found many applications in
daily life. A manifold of technologies are based on lasers and many people think
of treatments in medicine, the CD-ROM, stage lighting or optical communication.
But this source of light is also an essential instrument in physics research where
we can make use of its precision for cooling of atomic clouds [3, 4]. In the field of
ultracold quantum gases, matter is cooled down to almost absolute zero such that
the motion of the atoms freezes out. With the development of further cooling
techniques, temperatures can be reached at which a phase transition occurs and
the gas is forming a new state of matter called Bose-Einstein Condensate (BEC)
[5]. This means that the atoms - which are described by waves in terms of
quantum mechanics - start to oscillate synchronously instead of moving randomly.
Because we have a cloud containing several thousands to millions of atoms which
all behave the same, we can detect their quantum behavior merely by imaging
them with a camera. With this method, the tiny scale of quantum nature is
enlarged to macroscopic dimensions. But we can go even further. Since we have
an instrument that allows us to observe the quantum e↵ects of many atoms,
structures found in nature can be imitated, for instance, the periodic structure
of solid matter. These periodic structures are again created by laser light that
forms a standing wave, called optical lattice, in which the BEC can be loaded [6].
With the atoms in the optical lattice, we can learn how the interaction of many
particles work on the level of quantum mechanics [7].
Strontium is the element that we use to implement an optical lattice loaded
with ultracold atoms. Strontium as an alkaline-earth element has two valence
electrons and gives us a rich energy structure. It allows us to experiment with a
varity of lattice potentials that can be loaded with bosonic and fermionic isotopes
simultaneously and the atom also features a very narrow “clock-transition” for
precise measurements in the lattice. To address all the transitions of importance,
di↵erent kinds of lasers are required that have to work stably and reliably. One
stage of the cooling procedure to reach a BEC, is done in a magneto-optical trap
(MOT) with the specific transition 5s2 1

S0 ! 5s5p 3
P1 at 689 nm [8]. This thesis
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reports on the setup of a tunable diode laser that can be used for the red MOT
transition.
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Chapter 2

Laser

Lasers play an important role both in research and in technical applications. In
this chapter we give an overview of laser physics and discuss semiconductor laser
diodes as well as di↵raction gratings, which are part of the Littrow laser design
that I implemented. These Littrow lasers feature tunability of the wavelength
and are described in detail at the end of this chapter.

2.1 Fundamental Processes of Light-Atom In-
teraction

LASER is an acronym for Light Amplification by Stimulated Emission of Radi-
ation. The physical e↵ect of stimulated emission was first predicted by Albert
Einstein in 1916 [9]. Let us assume that we have an electron in a non-degenerate
two-level system with eigenstates |1i and |2i, and associated energies E1 and E2,
respectively. The energy di↵erence is given by �E = E2 � E1 > 0 as shown in
Fig. 2.1. If we consider an ensemble of such two-level systems, where each system
contains a single electron, the number of systems with an electron in |1i (|2i) is
N1 (N2) and the total number of two-level systems is N = N1 + N2. Moreover,
photons with energies Eph = �E = ~!21 can interact with each two-level system,
where ~ is the Planck constant divided by 2⇡ and !21 is the angular frequency of
the light field. The spectral energy density of the light field is defined as ⇢(!21).
The interactions can be classified into three processes [10]:

1. Absorption of photons: an electron in state |1i can absorb a photon of en-
ergy ~!21 and thereby change its state to the excited state |2i (see Fig. 2.1a).
The transition rate is proportional to the population of the ground state N1,
the energy density ⇢(!21) of the light field and a proportionality constant
B12 > 0, the so-called Einstein B-coe�cient, and thus Ṅ1 = N1B12⇢(!21).

2. Spontaneous emission: an electron in state |2i can change its state spon-
taneously to state |1i by emitting a photon of energy ~!21. The emitted

3



(a) (b) (c)

Figure 2.1: The energy di↵erence between the excited and ground state is given
by �E = ~!21. Panel (a) shows the absorption of a photon and excitation of
the electron. In Panel (b), we sketch the spontaneous emission of a photon so
that the electron falls into the ground state. In Panel (c) an incoming photon is
shown that stimulates the emission of an indistinguishable photon.

photon has a random direction, orientation of polarization, and phase (see
Fig. 2.1b). If we look at N2 systems, the rate of decay is simply described
by Ṅ2 = �A21N2, with A21 > 0, where the subscript indicates the decay
from |2i ! |1i. Here, A21 is the so-called Einstein A-coe�cient. The mi-
nus sign shows that the population N2 shrinks over time. The solution
is an exponential decay N2(t) = N2,0 exp(�A21t), where t is the time and
N0,2 = N2(t = 0). Therefore we can define ⌧21 := 1

A

21

as the lifetime of
state |2i and after t = ⌧21 the population of N2 has decreased by a factor
of 1

e

. The lifetime of a state is also of physical significance in experiments
for systems with more than two levels.

3. Stimulated emission: an electron in state |2i can not only move to state
|1i by a spontaneous process but can also be forced to change into the
ground state |1i by interaction with a photon. When a photon with energy
~!21 interacts with an electron in state |2i, the electron is afterwards in state
|1i and an additional photon with energy ~!21 is produced with the same
direction, orientation of polarization, and phase as the incident photon (see
Fig. 2.1c). We say that these two photons are coherent. In this process the
light field is amplified. In analogy to the absorption process the transition
rate is given by Ṅ2 = N2B21⇢(!21).

To derive a relation between the constants B12, B21 and A21, we apply the
Principle of Detailed Balance [9]. The system should now be in thermal equilib-
rium with the interacting radiation field. In the equilibrium state, the process of
photons changing from |1i ! |2i should balance the inverse process |2i ! |1i, so
that

N1B12⇢(!21) = N2B21⇢(!21) + A21N2 (2.1a)
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() ⇢(!21) =
A21/B21

N

1

B

12

N

2

B

21

� 1
. (2.1b)

To derive an expression for the ratio N1/N2, we make use of thermodynamics. In
terms of statistical physics, we consider a canonical assemble of two-level systems
with energy eigenstates E1 and E2. The probability of a non-degenerate two-level
system being in state |ii (i = 1, 2) is given by

P

i

(T ) =
exp

⇣

� Ei
k

B

T

⌘

P2
i=1 exp

⇣

� Ei
k

B

T

⌘

, (2.2)

where kB is the Boltzmann constant and T is the temperature.
From Eqn. (2.2), the ratio of systems in the excited and in the ground state can
be determined as

N1

N2

=
N · P1

N · P2

=
exp

⇣

� E

1

k

B

T

⌘

exp
⇣

� E

2

k

B

T

⌘ = exp

✓

~!21

kBT

◆

� 1. (2.3)

The inequality holds because the argument of the exponential function is always
positive, and it shows that in thermal equilibrium the population in the ground
level is always greater than in the excited state.
Inserting now Eqn. (2.3) into Eqn. (2.1b) gives a relation between the energy
density and properties of the two-level system, i.e. the Einstein coe�cients, the
temperature and the system’s energetic structure

⇢(!21) =
A21/B21

B

12

B

21

exp
⇣

~!
21

k

B

T

⌘

� 1
. (2.4)

Now we use Planck’s law which describes the energy density of blackbody radia-
tion in a frequency interval [!,! + d!] in thermal equilibrium:

⇢(!)d! =
~!3

⇡

2
c

3

1

exp
⇣

~!
k

B

T

⌘

� 1
d!, (2.5)

where c is the speed of light.
In the last step we compare the coe�cients of Eqns. (2.4) and (2.5) get the
Einstein relations:

B12 = B21 (2.6a)

A21

B21

=
~!3

21

⇡

2
c

3
(2.6b)

These relations show that the two-level system does not di↵erentiate between
absorption and stimulated emission of photons which happen with the same rate
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for the same population. Also, in the postulates of the transition probabilities the
Einstein A/B-coe�cients were assumed to be constants for a specific system and
independent of the radiation field. We derived the Einstein relations Eqn. (2.6)
for interaction with blackbody radiation and obtained an expression for the re-
lation between the A/B-coe�cients. Since the coe�cients are constants, we can
calculate the transition rates of the populations for arbitrary radiation fields, i.e.
also for fields that are not given by blackbody radiation.

2.2 Light Amplification

We would like to consider what happens to a beam of radiation that travels
through a medium consisting of two-level systems. This will allow us to derive a
necessary condition for light amplification.
Up to now we discussed two-level systems, where the energy levels have a fixed
energy di↵erence. But if we think of quantum mechanics, e↵ects of uncertainty
come up. This means that the energy di↵erence is not given by an exact value
but becomes di↵use. That is why we have to introduce a new function g(!)�! to
our transition rate which then reads Ṅ

i

= N

i

B21⇢(!21)g(!)�!. This additional
function determines the ability of our two-level system to interact with photons
of angular frequency in the interval [!,! + �!], even if they do not have energy
~!21. This function describes the so-called linewidth of a transition and is usually
a lorentzian function with the maximum at ! = !21.
A beam enters a section A of a medium with a certain intensity I(z) and leaves
the medium after a distance �z with intensity I(z + �z) as shown in Fig. 2.2.

Figure 2.2: A beam travels through a medium of two-level systems of volume
A · �z. Depending on the sign of (N2 � N1) the beam is either amplified or
damped.
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The change of energy in the beam per time in a frequency interval is given
by the change of photon number in the beam, multiplied by the photon energy.
Without spontaneous emission, this energy change is given by

(n2 � n1)B21g(!)
I(z)
c

A�z · ~!21, (2.7)

where n
i

= Ni
A�z

(i = 1, 2) is the population density of state |ii. Moreover, we used
the Einstein relation, Eqn. (2.6), and I(z) := I(!21, z) = ⇢(!21, z)�! · c. Here
⇢(!21, z)�! is the energy density in the angular frequency interval [!21,!21 + �!]
and at spatial position z.
If we would like to calculate the di↵erence in energy per time by a change of
intensity, we have to consider

h

I(z + �z)� I(z)
i

A =
h

I(z) + @I
@z

�z + ...� I(z)
i

A ⇡ @I(z)
@z

�zA, (2.8)

for an infinitesimal interval �z ! 0. Now equating Eqns. (2.7) and (2.8) gives

@I(z)
@z

= (n2 � n1)B21g(!)
I(z)
c

~!21, (2.9)

which can be solved easily:

I(z) = I0 exp
h

(n2 � n1)B21g(!)
~!21

c

z

i

= I0 exp(↵gz). (2.10)

Here I0 := I(z = 0) is an integration constant and ↵g := (n2 �n1)B21g(!)
~!

21

c

is
the so-called gain coe�cient. As you can see from Eqn. (2.10), the intensity only
increases if ↵g > 0 or, because both B21 and ~!21 are positive quantities, if

n2 � n1 > 0 , N2 �N1 > 0. (Condition for optical gain) (2.11)

Thus the incoming beam can be amplified only if there are more systems with
electrons in the excited state than in the ground state. This situation is called
population inversion. The condition for optical gain can be understood in a very
descriptive picture. A photon traveling through a medium is either absorbed or
copied (or nothing happens). If the possibility for creating coherent photons is
greater than for absorbing photons, the beam is amplified.
Let us again reformulate the equilibrium state Eqn. (2.1a) and insert the Einstein
relations Eqn. (2.6):

N1

N2

=
B21⇢(!21) + A21

B21⇢(!21)
= 1 +

~!3
21

⇡

2
c

3
⇢(!21)

> 1. (2.12)

Hence, we see that for a two-level system interacting with radiation the population
always obeys N1 > N2. So in a two-level system, we can reach a steady-state
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population inversion neither by interaction with light nor by thermal excitation
as discussed in the previous section. To reach the regime of population inversion
then, the medium has to be pumped by a process that can excite electrons and
is not limited to N1 > N2. Because this can not be done in a two-level system,
di↵erent techniques have been developed, e.g. by using a third energy level. How
pumping works in semiconductor laser diodes is explained later in Ch. 2.4.

2.3 Laser Oscillations

In the previous section, a condition for amplifying light was found: the popula-
tion inversion. If we have a pumped medium with population inversion (a gain
medium), it would indeed emit radiation because photons of spontaneous emis-
sion are amplified. But because these photons are created at random positions in
the gain medium and travel in random directions, the radiation is not coherent
and the energy is not focused into a small spatial angle. Shortly, this is not what
what we would call a laser. We desire to have a laser that emits coherent light.
Thus, the gain medium has to interact with indistinguishable photons and not
with random photons. That is why we have to put the gain medium between two
mirrors, a so called cavity or optical resonator. In this case, the photons do not
just leave the gain medium and a di↵erent, randomly emitted photon is amplified
and then leaves the gain medium again. Instead, coherent photons are reflected
back into the gain medium and by stimulated emission a defined light field with
indistinguishable photons is created within the cavity.
Resonators will be discussed in detail later, here we would like to consider the
interaction of light and the gain medium in a cavity. Let us assume two planar
mirrors with intensity reflectivity R1 and R2, respectively, that are mounted par-
allel at a distance d with a gain medium of length lg in between (see Fig. 2.3). The
intensity of a beam that propagates once back and forth in the gain medium, is
amplified by I(2lg) = I0 exp(2↵glg) [Eqn. (2.10)]. Moreover, we have losses due to
finite reflectivities, spontaneous emission and other scattering events, e.g. phonon
excitation. These losses can again be described as a decay rate and therefore the
intensity of the beam after one round trip in the cavity without gain medium is
I(2d) = I0R1R2 exp(�2↵

`

d), where ↵

`

> 0 is a loss coe�cient. The condition
for laser oscillations to occur is now that gain equals the losses in the resonator,
hence that a light field in the resonator does not decay [11, 12]:

R1R2 exp(�2↵ld) = exp(�2↵glg) (Threshold condition) (2.13)

Because the left side of the equation is fixed by the properties of the cavity, a
laser fulfills the threshold condition as soon as ↵g _ N2 �N1 is large enough to
balance the losses. In a semiconductor laser diode, for example, one can increase
the pumping rate and thus ↵g by increasing the current in the gain medium.
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Figure 2.3: Two planar mirrors at distance d form a resonator. The red arrows
indicate a beam of light that is reflected on the mirrors and travels back and
forth in the cavity. Moreover the pumped gain medium of length l

g

can lead to
non-decaying oscillations of light, if it can compensate for the losses of the cavity.

2.4 Semiconductor Laser Diodes

In this chapter we would like to consider lasers based on a semiconductor gain
medium. They are widely spread because of their small size, simple pumping
by applying current and their long lifetime of more than 100 000 h. Here I
will qualitatively present the idea of how a semiconductor laser diode works. For
further reading, Refs. [11–13] are recommended. First, I would like to give a short
overview of semiconductors and how to create regions of population inversion.
Then we use the knowledge from the preceding chapters about lasers and apply
it to semiconductor laser diodes to determine the output power.

2.4.1 Semiconductors in a p-i-n junction

The situation of two-level systems described in Ch. 2.1 does not hold anymore in
semiconductors. In semiconductors the energy states combine to energy bands
[14, 15]. These bands are divided into the valence band and the conduction
band and are separated in energy by the so-called band gap with gap energy Eg.
Since the number of states in a band is finite and each state can (due to Pauli’s
exclusion principle) be occupied just by two electrons, the maximum number of
electrons in a band is limited. If the band is completely occupied, electrons cannot
move freely within the band, whereas vacant states in the band allow electrons
to move. Usually the valence band of a solid state is completely occupied, while
the conduction band has vacant places. This is what the name conduction band
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derives from.
At T = 0 the valence band of a semiconductor is indeed completely occupied by
electrons, while the conduction band is vacant. So at T = 0 a semiconductor is
an electric insulator. By increasing the temperature, the probability for electrons
to be in the conduction band also increases, because the gap energy is small
enough that electrons can overcome it by thermal excitation. Thus, for T > 0 a
semiconductor gets conductive, however the conductivity is much less than that
of a usual conductor such as copper. Moreover, a property of a semiconductor is
the Fermi energy EF. It describes the energy that is required to add an additional
electron to the solid at temperature T = 0. For semiconductors EF, is within the
band gap as shown in Fig. 2.4 and an electron that is added will therefore appear
in the conduction band.

Figure 2.4: A sketch of the energy distribution of the valence and conduction
bands in a semiconductor. The Fermi energy is in the middle of the gap that has
a energetic width Eg. For T = 0, the valence band is completely occupied while
the conduction band is empty.

The absence of an electron in the valence band is called a hole and can be
described by a positive charge. The process of stimulated emission is not only
dependent on the population of electrons in the conduction band but also on the
population of holes in the valence band. A region where we can have a popula-
tion inversion, in the sense of higher probability to have stimulated emission than
absorption, can be realized by a p-i-n junction. This means a conjunction of a
p-doped, an intrinsic and a n-doped semiconductor in this order (see Fig. 2.5).
A p-doped semiconductor is a semiconductor material, where atoms from a dif-
ferent element are added so that the density of holes increases in the valence
band. In contrast, a n-doped semiconductor has a higher density of electrons
in the conduction band than an intrinsic one that simply stands for the pure
semiconductor element. If now the p-i-n junction is formed, a spatial gradient
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of holes and electrons is created. In Fig. 2.5 the region shown on left side of the
figure has a high density of holes and a low density of electrons, where the right
side has the inverse densities. This density gradient leads to di↵usion of holes
and electrons at the junction until a steady-state is reached. This gradient can
also be expressed by a di↵erence in the Fermi energy EF of the p-doped, intrinsic
and n-doped semiconductor. The charges flow until the Fermi energies are equal.
Thus, negative charges collect on the p-doped side and positive charges on the
n-doped side so that an internal electric field results.

Figure 2.5: The energy band structure for a p-i-n junction. The lower band is
the valence band and the upper one is the conduction band. In between is an
energy gap. The dashed area indicates an occupation of electrons. Because of
di↵erent densities of holes and electrons on the left and right side of the junction,
an internal electric field is created in the intrinsic region by di↵usion of charges.

Let us now apply a forward bias voltage, that means a higher potential on the
p-doped side and lower potential on the n-doped side. Then our system is per-
turbed and the Fermi energy is divided into the Fermi energy for the valence band
of the p-doped semiconductor EF

v

and into the Fermi energy for the conduction
band of the n-doped semiconductor EF

c

as shown in Fig. 2.6.
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Figure 2.6: The band structure of a p-i-n junction as in Fig. 2.5 but with an anode
connected to the left side and ground on the right side. The energy gradient
between the energy bands of the p- and n-doped semiconductors decreases in
such a way that a region of population inversion is created in the area of the
intrinsic semiconductor. A photon with the energy of the band gap can stimulate
an electron-hole-recombination and a coherent photon is emitted.

Hence, by applying voltage in this direction we compensate the internal elec-
trical field such that the electron from the conduction band of the n-doped side
can overcome the potential barrier and a current flows. Now we are able to un-
derstand how population inversion occurs in this p-i-n junction. The external
potential changes the energy bands and an overlap region is created, with both
electrons in the conduction band and holes in the valence band. This was our
condition for stimulated emission in the beginning of this chapter. An incident
photon with energy Eph = ~!cv := EF

c

�EF
v

can now stimulate the system to a
electron-hole-recombination and a coherent photon is emitted.

2.4.2 Output Power of Laser Diodes

As we know from Ch. 2.3, the gain coe�cient ↵g and thus the population inversion
has to be large enough to balance the losses in the resonator. The reflective sides
of the resonator in a semiconductor laser diode are usually formed by the edge
of the semiconductor junction itself. The di↵erence in refractive index between
the semiconductor and the surrounding gas leads to reflectivities large enough to
form a cavity for the laser diode [11].
The gain medium has dimensions of a few ten to few hundred micrometers. That
is why we can approximate the increase of intensity after the beam travels back
and forth through the gain medium with length lg by Eqn. (2.10),

I(2lg) = I0 exp(2↵glg) ⇡ I0(1 + 2↵glg) , I(2lg)� I0 ⇡ 2↵glg. (2.14)
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Thus, if we consider gain media where 2↵glg ⌧ 1 even for several round trips, the
output power P of the laser grows linearly in the gain coe�cient ↵

g

. The same
argument can be used for the losses within the cavity of length d and 2↵

`

d ⌧ 1:

I(2d) = I0 exp(�2↵
`

d) ⇡ I0(1� 2↵
`

d) , I(2d)� I0 ⇡ �2↵
`

d (2.15)

In semiconductor laser diodes, the gain coe�cient is proportional to the current
I through the diode. By taking the losses and also the reflectivities R1 and R2

of the mirrors of the cavity into account, we find

P _ ↵g(I)lg �R1R2↵`

d _ I � Ith, (2.16)

where we summarized the total losses in a constant Ith, the threshold current.
Because the output power represents the power transferred by the photons emit-
ted by the laser, we can relate the output power to electron-hole recombinations.
By dividing the current through the elementary charge e, we get the number of
electron-recombination processes per unit time. Multiplying this result by the
photon energy ~!cv, we obtain

P _ I � Ith

e

~!cv, (2.17)

where ~!cv is the energy between the electron in the conduction band and the hole
in the valence band. Now we have to consider that not every electron contributing
to the current will lead to an electron-hole recombination. Some of the electrons
can flow into di↵erent energy bands or excite phonons rather than creating a
photon. For this reason, we introduce an e�ciency constant ⌘ < 1 that gives us
the final result

P (I) = ⌘

~!cv

e

(I � Ith). (2.18)

This result shows that the laser diode starts lasing if a minimum threshold current
Ith is applied. The threshold current depends on the losses in the cavity as well
as the reflectivity and is a constant in I.
Let us now compare this theoretical function describing the output power with
the experimental data that I measured for the laser I built. The output power
P was measured with a power meter while the current was modulated linearly
from Iinit = (38 ± 0.5) mA to Ifinal(138.7 ± 0.5) mA. The modulation frequency
was 50 mHz, because for frequencies higher than 0.5 Hz a low-pass filter damped
the modulation and to avoid this, the current was scanned slowly. In Fig. 2.7 the
measured results with a linear fit function according to Eqn. (2.18) are shown.
At about 87 mA a strong increase in output power can be seen. Below this
current the emitted light is dominated by spontaneous emission. The threshold
current could be determined to Ith = (85.5± 0.6) mA. One part of the error
is from the error in Iinit and Ifinal. Moreover, errors occur from the di↵erent
starting points of the fitting function because just the part of the data curve

13



�� �� �� ��� ��� ���

����

����

����

����

����

����

����

� (��)

�
(�
)

Figure 2.7: The current was modulated by a function generator with a saw tooth
output voltage. The horizontal axis in this plot has been converted to a current
through the laser diode. The vertical axis shows the output voltage of the power
meter. A linear function is fitted and we obtain a threshold current of Ith =
(85.5± 0.6) mA.

with a high slope should be fitted. Since the cut-o↵ current had an influence on
the fitted function, several fittings with di↵erent cut-o↵ currents were done and
then averaged. Additionally some minor errors appear because of fluctuations of
the scope in the order of ±1 mV and the accuracy of the power meter is given
by ±3% which is why the error bars give the impression of a diverging curve
in Fig. 2.7 for higher currents. To avoid the error due to the di↵erent fits, the
behavior of the output power below threshold should be taken into account to
have a model for the complete measured data. As you can also see in the plot,
the output power above threshold is not perfectly a linear function. This might
be due to mode-hops which we will discuss later in Ch. 5.1.2. These mode-hops
could indeed be observed on the wavemeter while doing the measurement.

2.5 Gratings

To understand how an external cavity diode laser works, we have to discuss grat-
ings and especially blazed gratings. Di↵raction gratings are optical elements with
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equidistant grooves that are either reflective or transmissive. We will first con-
sider transmissive gratings and then apply our discussion to reflection gratings.
The sign convention for the angles we use follows the convention shown in Fig. 2.8.
If light hits the surface of a grating, it is not only transmitted but also di↵racted

Figure 2.8: Convention of the sign of angles.

with di↵erent intensity in di↵erent directions. The grating equation

n� = d(sin ✓ � sin ✓0) (grating equation) (2.19)

gives us the location of local maxima of the intensity distribution, where n is the
order of di↵raction, � is the wavelength and ✓0 (✓) is the angle of the incoming
(outgoing) beam related to the grating’s normal. In the next chapter we would
like to consider how Eqn. (2.19) can be derived by the Fraunhofer approximation.

2.5.1 Grating in the Fraunhofer Approximation

Let us remember Fraunhofer di↵raction [16] which describes the intensity pattern
of a plane wave being di↵racted by an object in the far-field approximation. This
approximation requires the Fresnel number NF = a

2

�d

to be small, i.e. NF ⌧ 1,
where a is the dimension of the object, � the wavelength and d the distance
between the object and plane of observation. We define the coordinates in the
plane of our object with X := (⇠, ⌘)T and write the transmission function of the
object as ⌦(⇠, ⌘) (see Fig. 2.9). The idea behind Fraunhofer di↵raction comes
from Huygens principle. The principle assumes that every point of the object
⌦ is the source of a spherical wave if the object is illuminated. Those spherical
waves interfere and the Fraunhofer di↵raction describes the interference at far
distances from the object plane. The intensity pattern is then approximated by

I(k?) _
�

�

�

�

Z +1

�1
⌦(⇠, ⌘) exp[�i(k? � k?,0)X] dX

�

�

�

�

2

_
�

�F
⇥

⌦(X)
⇤

�

�

2
, (2.20)
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Figure 2.9: ⌦ is the di↵racting object. The intensity pattern is observed on a
plane at distance d. The angle ✓ (�) gives the di↵raction in the x (y)-direction.

where k? := (k
x

, k

y

)T and k

i

= 2⇡
�i

(i = x, y) are the wavenumbers in the i-

direction of the outgoing beam and k?,0 := (k
x,0, ky,0)T is the wavenumber of the

incoming beam. Thus, the intensity pattern in the Fraunhofer approximation
is proportional to the absolute value of the Fourier transform F of the object
function ⌦(⇠, ⌘). This is a useful result because we can easily calculate the e↵ect
of a plane wave illuminating an arbitrary object. Moreover, what is of interest
to us, is the angular distribution of the intensity pattern. From Fig. 2.9, you can
geometrically see that

sin ✓ =
k

x

p

k

2
x

+ k

2
y

+ k

2
z

=
2⇡k

x

�

, k

x

=
�

2⇡
sin ✓ (2.21a)

sin� =
k

y

p

k

2
x

+ k

2
y

+ k

2
z

=
2⇡k

y

�

, k

y

=
�

2⇡
sin�. (2.21b)

Further, we would like to calculate the e↵ect of a grating on a plane wave in
the Fraunhofer approximation by applying Eqn. (2.20). The function ⌦(⇠, ⌘) is
in this case a sum of N equidistant grooves of the same form

⌦grating(⇠, ⌘) =
N�1
X

m=0

⌦groove(⇠ �ma), (2.22a)
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⌦groove(⇠) =

(

1 � b

2
< ⇠ <

b

2

0 else,
(2.22b)

where ⌦groove is the object function of a single groove of width b, and a is the
distance between the grooves. Because the grating is approximated as infinitely
large in the ⌘ direction, the function does not depend on ⌘.
Now, we could just calculate F

⇥

⌦grating

⇤

in a straightforward manner, but there
is a more elegant and simpler approach, since ⌦grating is a periodic function in
⌦groove. Hence, we can get this periodic function by convolution of the groove-
function with a comb of N �-distributions spaced by a:

⌦grating(⇠) =

"

N�1
X

m=0

�(⇠ �ma)

#

⇤ ⌦groove(⇠) (2.23)

Now we apply the convolution theorem F [f ⇤g] = F [f ]·F [g] from which it follows
that

F [⌦grating(⇠)] = F
"

N�1
X

m=0

�(⇠ �ma)

#

· F [⌦groove(⇠)], (2.24)

i.e. we can separate the calculation into two Fourier transforms and simply
multiply the results afterwards. The derivation of both integrals can be found in
Appendix A. We find with x := sin ✓ � sin ✓0 :

Igroove(x) = Igroove(0)

2

4

sin
⇣

⇡bx

�

⌘

⇡bx

�

3

5

2

= Igroove(0) sinc
2

✓

⇡bx

�

◆

(2.25a)

Icomb(x) = Icomb(0)

"

sin
�

N

⇡

�

ax

�

N sin
�

⇡

�

ax

�

#2

(2.25b)

Igrating(x) = Icomb(x)Igroove(x) (2.25c)

From Eqn. (2.25b) the grating equation (2.19) could be reproduced by finding
the maximum values. In case of a grating the number N of illuminated grooves
is usually a few hundred to a few thousand so that the sine function in the
denominator of Eqn. (2.25b) oscillates much faster than the modulation of the sinc
function in Eqn. (2.25a). Therefore the comb-pattern determines the structure
of the intensity distribution with its local maxima while the e↵ect of the finite
groove size is the envelope of the intensity pattern.

2.5.2 Blazed Gratings

At last, we discuss a blazed grating. The grooves are now not transmissive but in
the ideal case areas of reflectivity 1. Again Huygens principle holds but we have
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to consider reflected waves from which we can calculate the intensity pattern in
the Fraunhofer approximation. If we neglect the interference of the incoming and
outgoing waves we can again make use of Eqn. (2.20). The grooves of a blazed
grating are not parallel to the grating’s surface but have a certain angle as you
can see in Fig. 2.10. By using this shape, we can vary the amount of intensity
between the di↵erent orders of di↵raction. Therefore we have to change the

Figure 2.10: Schematic drawing of a blazed grating, where the grooves include
an angle ↵ to the grating’s normal. In our convention the angles in the figures
are counted positive.

groove function Eqn. (2.25a) and afterwards multiply it with Icomb again. The
modification we have to do with Igroove is to shift the angle of zero order by 2↵,
where ↵ is the blaze angle,

Igroove(✓) ! Igroove(✓ + 2↵). (2.26)

The zeroth order of di↵raction is the geometrical reflected beam and this angle
changes if the surface of grating is rotated. The intensity pattern with and
without blaze angle is plotted in Fig. 2.11. The top row shows a grating with just
N = 8 slits illuminated and an angle of incidence (AOI) of 0�. The bottom row
is a simulation of the grating I used for my laser with AOI = 43.55�. The left
panel in the bottom row shows the result without blaze angle and the right panel
uses a blaze angle of ↵ = 28.36�. The intensity in the first order of di↵raction
dramatically increases when using a blazed angle, as can be seen as a shift of the
envelope function to the right hand side of the plots.
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Figure 2.11: The figure shows the e↵ect of a blaze angle on the intensity pattern.
For all plots � = 689 nm. The black line is the intensity distribution, while the
dashed red line shows the envelope caused by the finite size of the single groove.
Top row: A grating with 1000 grooves/mm = 1/a, groove size b = 0.75a, with
N = 8 grooves illuminated and AOI = 0� is simulated. Bottom row: The grating
I use with 2000 grooves/mm, groove size a = b, N = 100 grooves illuminated
and AOI = 43.55� is simulated. Panel (a) and (c) show a non-blazed grating,
while panel (b) shows a grating with blaze angle ↵ = 22.5� and panel (c) has
↵ = 28.36�.

2.6 Laser Designs

There a several designs to implement a tunable laser. In this chapter two tunable
lasers, the Littrow and the Littman laser, are presented and later compared. In
both designs a laser diode is used and the relevant laser cavity is formed externally
instead of the internal diode cavity. For this reason, these designs are classified
as External Cavity Diode Lasers (ECDL).
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2.6.1 Littrow Configuration

The laser design considered in the following is a so-called Littrow laser [17, 18].
There, the cavity resonator consists of one fixed mirror and a reflection grating
with a gain medium in between (see Fig. 2.12). The grating has two functions:

Figure 2.12: The Littrow configuration consists of a fixed mirror, here on the left
side of the figure, with reflectivity R1, a grating, here on the right side, that can
be rotated, and a gain medium. The first order of di↵raction travels back to the
gain medium and this reflection coe�cient is indicated with R2. The transmission
of radiation reflected into the zeroth order of di↵raction is called T2 here.

First, it has to work as a back-reflector to create laser oscillations and form a
resonator with the fixed mirror. Second, the grating must work as a mirror that
couples some of the light out of the resonator. Both of these functions can be
done by a grating. In general, the grating equation (2.19) has to be fulfilled. If
the incoming and outgoing beam of first order of di↵raction are congruent, i.e.
✓ = �✓0, then the arrangement is called the Littrow configuration. In this case
Eqn. (2.19) simplifies to sin ✓ = �

2d
for n = 1. The condition n = 1 means that

we want to have no other order of di↵raction in between the back-reflected beam
and the out-coupled beam, which has order n = 0. By rotating the grating,
the wavelength reflected back into the laser medium (and thus the wavelength at
which the laser runs) can be selected. The tunability is limited by the wavelengths
at which the gain medium can be stimulated. We can control the reflectivity by
the blaze angle of our grating, which is important to the performance of our laser
as we know from Ch. 2.3.
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2.6.2 Littman Configuration

In addition to the Littrow configuration, there is the similar Littman configu-
ration [17]. Here, the beam coming from the gain medium hits a fixed grating
and the zeroth order of di↵raction is coupled out. The first order of di↵raction
propagates to an additional mirror that can be rotated. The beam coming from
the mirror is then reflected back to the gain medium by the grating as shown
in Fig. 2.13. By rotating the mirror, the wavelength coupled back to the laser
medium can be chosen and again the laser is tunable as in the Littrow configu-
ration.

Figure 2.13: The Littman configuration has a fixed mirror, here on the left side
of the figure, a grating that is fixed, and a gain medium in between. Additionally
there is a rotatable mirror that provides tunability by choosing the wavelength
reflected back to the gain medium. In contrast to the Littrow configuration, more
reflection coe�cients have to be considered.

2.6.3 Littrow vs. Littman Laser

Both the Littrow as well as the Littman laser are tunable in wavelength by the
frequency selective grating. One advantage of the Littman configuration is a
fixed direction of the outgoing beam. Even if the wavelength is tuned, none
of the optical components after the laser have to be adjusted, while in Littrow
configuration, the grating itself is rotated and thus the direction of the beam
changes. Moreover, the Littman laser is more stable towards mode-hops than
the Littrow laser because the wavelength selection happens two times on the
grating. Therefore the beam reflected back into the gain medium is more narrow
in bandwidth.
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In contrast to the Littman laser, the Littrow laser provides a higher output power.
Because this was more important to us, a Littrow laser was built.
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Chapter 3

Design and Setup

In this chapter I would like to present the design of the laser and report on the
setup. The description of the setup points out problems that came up during the
assembling and suggests possible solutions. In the end, I will discuss methods
for minimizing the threshold current to obtain maximum output power as well as
the optimization of the temperature controller which is required for the long-term
stability of the laser.

3.1 Mechanical Design

Figure 3.1: The left side of the laser diode has a reflective layer while the layer
on the right side has an anti-reflection coating. The diverging beam is collimated
by a lens.

The description of a Littrow Laser in Ch. 2.6.1 is very schematic. To implement
this design a semiconductor diode laser (LD) is used. Usually a LD itself forms
a cavity by two reflective planes. Because we want to have the grating as one
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of the mirrors of our cavity, the LD has an anti-reflection (AR) coating on the
side pointing towards the grating. Moreover, the small size of the gain medium
leads to a great divergence angle. That is why a collimation lens is put between
the LD and grating to have an approximate plane wave hitting the grating and
correspondingly sharp orders of di↵raction. This configuration can be seen in
Fig. 3.1.
The mechanical design I used for my 689 nm Littrow laser was made and opti-
mized by the Steck Lab at the University of Oregon [1]. It promises a linewidth
in the kHz range. The design was modified by A. Mayer at MPQ for compatibilty
with metric units. A manual with pictures of the assembly by the Steck Lab is
available online in Ref. [19].
The case is machined from an aluminum block and consists of a base-plate, the
main case with the grating arm and the bottom and top plate of the cavity as
you can see in Fig. 3.2. Between the grating arm and a fine adjustment screw sits

Figure 3.2: Drawing of the ECDL design with the position of the important
features.

a piezo-stack with sapphire-glass discs glued onto each end by Torr Seal. The
fine-adjustment screw can bend the grating arm for approximate fixing of the
correct position. By applying voltage to the piezo we can then fine-tune the grat-
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ing to the desired angle. The grating arm is machined at an initial angle of 47�

with respect to the laser beam and is designed to be used at a 45� angle. In this
position, the grating arm is still flexible enough to rotate in both directions and
we can thus scan the laser’s wavelength. Below the grating arm sits an additional
O-Ring to damp mechanical vibrations especially at ⇠ 14 kHz as described in
Ref. [1].
To provide temperature control, a thermistor sits in a hole in the laser head to
measure the temperature next to the laser diode. For heating and cooling two
Peltier elements are positioned between the base-plate and the bottom plate of
the cavity.

3.2 Sonication

To protect the optical elements and the laser diode from dust and other impuri-
tiers as well as to potentially place the cavity in a vacuum, all parts were cleaned
before assembly. The cleaning process removes dirt, machine oil and other unde-
sired substances. Thus, the aluminum parts and Kapton wires were put into a
bath with distilled water and soap. The screws as well as the collimation tube, O-
Rings and sapphire disks were put together with isopropanol into a beaker. Then
the bath was treated by a procedure called “sonication” at 40 �C for 10 min. In
the ultrasonic bath waves with a frequency of 38 kHz are produced in the water
and isopropanol by the Sonicator (Sonoswiss SW 90 H ). The ultrasonic waves in
the water create bubbles that first grow and then collapse. This leads to local-
ized, high temperatures of about 5000 K and thus to a thermal dissociation of
water that recombines to reactive radicals. These radicals can dissolve organic
compounds on the surface of the materials and thus clean them [20].
After sonication every surface was rinsed per about 10 seconds with deionized
water except for the screws and collimation tube. Then the parts were again
flushed by acetone and isopropanol. In a final step I again rinsed every part with
deionized water to remove the chemicals and dried the parts on aluminum foil
over night. The collimation tube and the screws were not treated with water
because it dries slowly from the thread at room temperature while acetone has
a boiling point at 56 �C1 and evaporates therefore faster. Moreover, no acetone
was applied to the O-Rings to protect the material which is chemically soluble
in acetone. After this sonication procedure, the cleaned parts were touched only
with cleanroom-grade nitrile gloves.

1
https://en.wikipedia.org/wiki/Acetone
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3.3 Brewster Window

The outgoing laser beam leaves the cavity through a plate of glass. This window
is used to isolate the cavity from influences of the environment, e.g. temperature
fluctuations or di↵usion of air. It is glued onto the mount with the two-component
vacuum-tight glue Torr Seal and dried at room temperature.
Because the laser beam crosses di↵erent media (air/vacuum - glass - air), reflec-
tions occur that we want to minimize to get maximum output power. Thus, the
window is positioned at Brewster’s angle ✓B to prevent reflections of s-polarized
light. Here s-polarized light is defined as perpendicular to the plane of the op-
tical table and therefore parallel to the plane of incidence on the window. We
position the LD by rotating the collimation tube to obtain s-polarized emitted
light. Brewster’s law describes the angle for which the reflection of s-polarized
light from the window vanishes.

Brewster’s angle [16] is given by ✓

B

= arctan
⇣

n

glass

n

air

⌘

and with nair ' 1, ✓B = 57�

which is pre-machined into the aluminum case. It follows nglass = tan(✓B) =
tan(57�) = 1.540. The glass I used was cut by a glass cutter from a microscope
slide. If we assume that it is made out of made of borosilicate glass BK7, it has
a refractive index of n(689 nm) = 1.513 that can be calculated by Sellmeier’s
formula [21]. Therefore the reflection should not be zero but is still strongly
suppressed by this angle of the window with respect to the beam.

3.4 Temperature Control Elements

For running the laser on the same mode and at constant output power, we have to
accomplish stable external conditions and have to control the laser’s temperature.
A change in temperature leads to thermal expansion of both the external cavity
and the LD. Furthermore the refractive index of the semiconductor material also
depends on temperature [22]. Hence, the properties of the laser resonator are
influenced by the temperature controller which should on one hand be able to
hold a constant temperature for stable performance of the laser and on the other
hand should be able to adjust the temperature in a defined way to optimize
the laser. In this section the mounting of the temperature control elements is
described and later in Ch. 3.9.2 the electronic controller is discussed.
For temperature measurement a 10 k⌦ NTC (Negative Temperature Coe�cient)
thermistor (EPCOS, RS 528-8536) is used and later connected to an external
Toptica controller. It uses the dependence of electrical resistance on temperature
and computes the temperature by Ohm’s law R = U/I with voltage U and
current I. The thermistor sits next to the laser diode at an approximate distance
of 10.4 mm and is fixed inside a hole in the aluminum laser head by glue (EPO-
TEC R� H77). This two-component glue is thermally conductive and electrically
insulating with a recommended mass mixing ratio of Part A and B of 100 : 15.
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For curing, the laser head with thermistor was baked at 150 �C for 210 min.
To control the temperature, two Peltier modules (ETH-071-14-15, RS 490-1480,
I

max

= 6 A) are soldered in series and placed between the base-plate and bottom
plate. A Peltier element or TEC (Thermoelectric cooler) makes use of the Peltier
e↵ect. The Peltier e↵ect describes the heat transfer at an interface of di↵erent
conducting materials while current flows. This e↵ect is much greater if one of the
material is a p-/n-doped semiconductor. The direction of current determines if
the junction gets cooled or heated. The advantage of Peltier elements is that both
heating and cooling can be done by the same component. For further reading on
the Peltier e↵ect (and the reverse Seebeck e↵ect) Ref. [14] is recommended.
The orientation of the modules is important. In my case the hot side is the one
where the wires are connected, as you can see in Fig. 3.3. To support thermal
conductivity both sides of the Peltier elements are greased with a thin layer of
thermal paste (WLPF from Fischer Elektronik).

Figure 3.3: Sketch of the Peltier elements I used from top and side view with
orientation of the hot and cold side. The red (black) wire indicates the anode
(cathode).

3.5 Electronic Circuit

The electronic elements, i.e. Peltier modules, thermistor, piezo and laser diode,
are controlled by a Toptica console and the electronics are connected by a D-Sub 9
plug. To both protect the laser diode and also to provide current modulation
ports, an additional protection board is used.

3.5.1 D-Sub 9 Connection

The wires that are used inside of the aluminum case have to be vacuum com-
patible. Thus, wires with a Kapton insulation are chosen and soldered to the
electronics. Because the insulation of the piezo connecting wires and of the ther-
mistor are made from Teflon, these wires were shortened. The Kapton wires enter
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Figure 3.4: Front view of the D-Sub 9 female plug and order of the pins.

the main case through five holes that can be seen at the position of the D-Sub 9
plug in Fig 3.2. Especially the connections to the laser diode do not share the
holes with other wires to reduce disturbance by magnetic fields of the di↵erent
currents, e.g. from large modulation of the piezo. To vacuum seal the holes and
to fix the wires into the case, the two component glue Loctite 1C Hysol was used
and cured at room temperature. This glue was chosen because it is less viscous
than Torr Seal and hence it fills the bores more easily.
Later we would like to plug or unplug the laser without opening the case or
soldering any connection, so a D-Sub 9 female plug is mounted from outside to
the case. My choice of ordering the pin contacts can be seen in Fig. 3.4. It is
recommended to document the pin connections properly during soldering to be
sure that the laser diode has the correct connectivity. Because I decided to install
the wires of the Peltier elements outside of the case, I did not connect them to
the D-Sub 9 plug but instead I used a Molex KK plug for the Peltiers. That is
why two pins of the D-Sub 9 are not in use and I soldered one more Kapton wire
to it which also runs into the main case, so that if another wire breaks, there is
a backup wire.

3.5.2 Protection Board

As mentioned above an additional protection board is integrated between the
D-Sub 9 plug of the laser itself and the Toptica controller. The whole circuit is
attached in the appendix B. The board o↵ers the following features:

• A combination of four low-pass filters protect the laser diode from voltage
spikes in the power supply.

• Schottky diodes protect the laser diode if the wrong input voltage polarity
is applied.

• A relay shunts the laser diode as soon as it becomes disconnected from the
power supply to protect it from electrostatic discharges.
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• The current can be scanned by a DC modulation part using a SMA plug.

• Some space on the board is left empty for an AC modulation part that can
be soldered later if required.

• The power supply is decoupled from the modulation modules.

• Test points for a four-point measurement to determine the current running
through the LD. The foil resistor used here has a resistance of R = 0.1 ⌦
and by measuring the voltage, the current can be calculated by I = U/R =
(10U) ⌦�1.

• If a photodiode is integrated in the case of the laser diode, the signal can
be amplified and can be read out from a SMA connector. The photodiode
amplifier requires an external ±15V power supply.

Be aware that a JFET in the DC modulation circuit steals about 9 mA that
has to be subtracted from the value of the current on the Toptica console. A
more detailed description of the protection board can be read in the master’s
thesis of Nejc Janša [23].

3.6 The Laser Diode and Collimation Tube

The laser diode has a front facet antireflective (AR) coating with an intensity
reflectivity of 3 · 10�4. It has a center wavelength of about 685 nm and is pro-
duced by Eagleyard Photonics (EYP-RWE-0690-00703-1000-SOT02-0000). The
recommended operational parameters are a maximum current of I

max

= 140 mA
and a temperature between 15� 20� C.
The diode is connected to a 3-Pin socket that is soldered to the Kapton wires
mentioned in Ch. 3.5.1. The pin assignment of my diode can be seen in Fig. 3.5.
The polarization of the emitting radiation is in the plane of the LD anode and
PD anode pin. Be aware that the assignment and direction of polarization varies
between diode models.

There was a problem coming up when plugging the pins into the socket be-
cause the sockets available in our lab have the wrong pin diameter and could not
be mounted to the diode. We now use another socket that is not ideal because
the designated pin circle diameter is too small. The pin circle diameter deter-
mines the distance between the pins itselves and, unfortunately, with this socket
the pins get deformed. Next time this diode is mounted, new sockets might have
to be used. The diode’s manufacturer recommends a certain socket (R100-0403-
04N-75S-R15-L14 by Andon electronics) that was also tried out but did not work
because the socket holes were too wide to hold the diode pins safely.
To position and to align the laser diode, it is mounted in a collimation tube
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Figure 3.5: Sketch of the back view of my laser diode with the pin connection
indicated. The LD and PD pins are connected to the anode and the GND pin to
the ground. The polarization of the emitted light is parallel to the anode pins.

(Thorlabs LT110P-B) with an AR coated aspherical lens (Thorlabs C610TME-
B, f = 4.00 mm, WD = 2.44 mm, NA = 0.60). In my case, the laser diode does
not have the correct dimension for the collimation tube design from Thorlabs
and new lenses had to be bought. When planing a new Littrow laser, you should
consider the following:
The case of the diode has a plane at which it is mounted in the collimation tube.
Relative to this plane the light emitting area is located in a distance d (for my
diode d = 3.65 mm). Because the dimension of the light emitting area in a semi-
conductor diode is usually in order of a few µm, it can be assumed as a point
source. Thus, this point source should sit in the focus of the collimation lens. The
Thorlabs collimation tubes are designed to mount diodes with d = 1.7� 3.2 mm
and this limit comes from the finite axial extend of the threads. If d is out of
this range, the correct choice of the collimation tube and lens has to be made.
You also have to keep in mind that the focus of a lens is not just at the distance
of the focal length to the lens’ surface but is given by the working distance WD.
Figure 3.6 shows the size of the di↵erent collimation tubes o↵ered by Thorlabs
and their dimensions. So if you decided on a certain tube, you should calculate
l = l

0 � d, where l

0 is the distance between the mounting plane and the begin
of the thread from the tubes aperture. Then WD < (l + x) has to hold with
x as the distance between the lens surface and end of its thread. Because the
thread of the lens has finite size y the WD has also a lower bound and therefore
l � y + x < WD < l + x. The WD should be somewhere in the middle of these
boundaries.
When the correct lens and collimation tube are found, the diode can be mounted.
The LD is a sensitive electronic device and can be destroyed by electrostatic dis-
charge. While operating with the diode you should always take care that both
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Product name l

0 in mm
LT110P-B 6.38
LT220P-B 10.82
LT230P-B 6.81
LT240P-B 8.92

Figure 3.6: Sketch of the collimation tube and mounted lens. The saw tooth
shape indicates the thread. For many Thorlabs mountings of aspherical lenses
y = 3.2 mm. The table shows the parameter l0 for di↵erent Thorlabs tubes.

yourself and every tool that touches the LD is grounded.

3.7 The Grating

In Ch. 2.5 we discussed gratings and blazed gratings. Now I present my choice of
grating and how it was mounted.
From the grating equation (2.19) and with the desired Littrow angle of ✓ = 45�

related to the grating’s normal, we get d = �

2 sin ✓

= 689·10�9 nm
2 sin 45� = 4.87 ·10�4 mm or

1
d

= 2053 mm�1. Because gratings with 2000 grooves/mm are standard gratings
available for purchase, such a grating was chosen (richardsongratings, -059H).
Because we cannot buy gratings with exactly the desired number of grooves, the
angle has to be adapted to ✓ = arcsin

�

�

2d

�

= 43.55�. So the grating arm has to
be bent from its initial position of 47� by �✓ = 3.45� which is out of the elastic
area of the aluminum flexure and plastic deformation occurs. That is why it is
recommended to use an additional shim on one side of the grating. With a shim
the grating is not flat on the aluminum anymore but has already an angle < 47�

to reduce mechanical stress on the grating arm. I measured a thickness of about
0.2 mm of the shim with glue that gives with the grating’s length of 12 mm an
angle of about 1� related to the grating arm. The grating arm therefore has to
be bent by �✓ = 47� � 1� � 43.55� = 2.45�.
From the datasheet, we know that the maximum e�ciency of di↵raction is in
Littrow configuration for a wavelength of � = 475 nm. This grating is not a
blazed grating but a holographic grating. For this type the grooves are not tilted
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by a triangle shape but in sinusoidal pattern which leads to a smoothening of
the orders of di↵raction. The advantage is that the e↵ect of a blazed angle is
symmetrical for both positive and negative angle of incident. If we approximate
the holographic grating as a blazed one we can obtain the blaze angle. Since the
blaze angle is for this grating equal to the Littrow angle for � = 475 nm, we get
↵ = ✓(475 nm) = arcsin

�

�

2d

�

= 28.36�. The intensity pattern of � = 689 nm and
✓0 = 43.55� is shown in the previous chapter in Fig. 2.11.
To mount the grating on the arm, it was glued with Torr Seal. A positioning jig
produced by our machine shop was put on the grating arm. It has the correct
dimensions, so if the grating is put on it, the laser beam will hit the grating in its
center. First the shim was glued with a very thin layer of Torr Seal and placed
on the desired position. After the glue dried, the grating was carefully put down
on the jig. Pay attention that the grooved surface is parallel to the grating arm,
otherwise the diode can eventually not get feedback from the grating. Afterwards
one drop of Torr Seal is used to fix the grating and as soon as the glue is cured
the jig can be removed. Later, when the laser was working some more drops of
glue were added for stability.

3.8 Aligning to Feedback

With the electronics, laser diode, collimation tube and grating we can get the
LD to start lasing. To reach the lasing condition we have to align the laser head
and lens position such that the first order of di↵raction is reflected back into the
semiconductor laser diode and gives feedback. By now at the latest the maximum
current should be set on the current controller. It is recommended to connect a
multimeter to the test points of the protection board while doing the next steps.
First the beam has to be collimated and for this purpose the laser head has to
be taken out of the case. If current runs through the LD, it starts emitting light
but with low intensity which is due to spontaneous emission. The lens position
has to be adjusted such that this emitted light is collimated on a far object e.g.
a wall on the opposite side of the lab. Then the laser head is put back into the
case and fixed by two M4 screws for fixing and two grub screws to adjust the
angle between the beam and the baseplate. Now both the fine-adjustment screw
as well as the grub screws have to be scanned while applying not maximum but
a high current to the LD. If the first order of di↵raction is directly sent back
to the LD, i.e. it gets feedback, the LD starts lasing immediately that can be
seen by a dramatic increase in output power. Usually this procedure beginning
with collimation to the wall has to be repeated a few times. The reason is that
if the diode is not lasing the emitted light is very weak and not locally confined.
Therefore the light is hard to see on a far object and it is not clear to determine
the point of collimation.
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3.9 Optimization

After the laser is set up, it has to be optimized. This chapter contains instructions
to minimize the threshold current to get maximum output power and to adjust
the electronic controller for optimal temperature control.

3.9.1 Minimizing Threshold Current

The threshold current was discussed in Ch. 2.4.2. We found that the output power
Eqn. (2.18) of a semiconductor laser diode is given by P (I) = ⌘

~!
cv

e

(I � Ith). The
threshold current Ith is dependent on the losses in the cavity due to e.g. scatter-
ing but also on the reflection coe�cients of the cavity’s mirrors (or the grating).
We can minimize the threshold current by changing the amount of feedback. The
properties of the grating, i.e. blaze angle and coating, that influence the reflec-
tivity are fixed. The only degrees of freedom to change the feedback are thus the
lens position and polarization of the incident wave.
Let us first consider the position of the lens. The intensity pattern of a wave
di↵racted by a grating in Fraunhofer approximation of Ch. 2.5 just holds if the
incoming beam is a plane wave. The beam coming out of the laser diode is not a
plane wave but a gaussian beam that has curved wavefront. By aligning the laser
diode to a far o↵ object, we tried to make the wavefront as plane as possible to
get sharp orders of di↵raction. By changing the position of the lens just slightly,
we can change the intensity of the beam that gives feedback into the laser diode.
A recommended way to find the feedback from which the highest output power
results, is to start with a lens position where the beam is focused between the
laser diode and a wall. The next step is to mount the laser head into the cavity
and find the position where the laser gets feedback and measure the threshold
current with help of a power meter. The final step is to take the laser head out
again and rotate the lens in the direction so that the focus is now further away
and again find out the threshold current. These steps should be iterated until the
lowest threshold current is found. Be aware to always rotate the lens in the same
direction during this procedure because of hysteresis of the threads. Hysteresis
means in this context that after rotating the lens one step forward and the same
step backward, the lens is not at the initial position again.
The second degree of freedom is the polarization of the beam that can be changed
by rotating the collimation tube in the laser head. The polarization dependence
on the reflectivity e�ciency arises from the coating or grating’s material. The
collimation tube can be rotated and for each step the threshold current be mea-
sured. In my case, the grating filters the polarization strongly. I could lower the
threshold current by a certain choice of polarization by about 20 mA. In this
case, the zeroth order beam was still s-polarized light and the p-polarized light
was not reflected but absorbed by the grating. For this reason the total output
power at the maximum current was even smaller than for an incident s-polarized
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light. Not only absorption of p-polarized light at the grating can a↵ect the output
power but also undesired reflections on the Brewster window that occur for light
that is polarized perpendicular to the plane of incidence.
The lowest threshold current I could reach was Ith = (85 ± 0.6) mA as shown
in Fig. 2.7 in the previous chapter. This leads to a maximum output power of
about 22.5 mW that is slightly below the value ⇡ 23 mW that can be found in
datasheet of the laser diode. The operational conditions and optics Eagleyard
Photonics used, are not known but assumed to be optimal. Therefore the output
power I measured might already be the best I could reach without changing e.g.
the blaze angle or the lens.

3.9.2 PID-Controller

The temperature control elements, i.e. the thermistor and Peltier modules (Ch. 3.4)
are connected via the protection board to the temperature control device DTC
110 from Toptica. In the following we introduce the principle of such a controller
and afterwards we present a method for finding the optimum settings on the basis
of the data I measured for our laser design.
All controllers work with a feedback loop. The idea is to take input signals where
one is the set value and the other is a measurement of the same quantity from
the system. The set value is e.g. the desired temperature for our laser and the
signal is the measured temperature. Those two signals are subtracted and the
result is an error signal e. The controller then manipulates the error signal and
gives an output u to the system that is for example the current applied to the
Peltier elements. The system reacts to the output, returns a signal and the loop
starts again. To optimize our system we have to understand the process of the
error signal manipulation. A typical mechanism to implement a feedback loop
is a PID controller which is an abbreviation for Proportional-Integral-Derivative
controller. The output is composed of three terms:

u(t) = kPe(t) + kI

Z

t

0

e(⌧)d⌧ + kD
de(t)

dt

= kP



e(t) +
1

TI

Z

t

0

e(⌧)d⌧ +
1

TD

de(t)

dt

�

(3.1)

The first term is proportional to the error signal e with proportional gain kP and
gives a correction to the system dependent on the current error. The second term
integrates e(t) over time and is weighted with the integral gain kI. By integration,
it takes errors from the past into account and is therefore responsible for long-
term stability of the system. The last term contributes to the output with the
value of the derivative of the error function multiplied with the derivative gain
kD. Because it is proportional to the derivative, it can be seen as an interpolation
of the error signal and thus predicts errors in the future of the system. The gain
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Figure 3.7: The error signal on the scope with kP = kcrit and kI = kD = 0. The
blue dots show the measurement data with error bars and the red line is the fitted
function. 1 V corresponds to 1 K on the temperature scale. The critical time is
determined to be Tcrit = (51.89± 0.01)s.

factors kP, kI and kD now have to be adapted to the specific system to be optimized
in the sense of a fast decaying error signal and long-term stability. Parameters on
which the factors are dependent are in the case of our temperature control system
the e�ency of the Peltier elements, the thermal conductivity between the Peltier
elements and the thermistor, and the thermal mass of the laser head. A procedure
to find good parameters is the Ziegler-Nichols method [24]. In this procedure two
characteristic values of the system have to be determined, the critical gain kcrit

and the critical period Tcrit. To this end we first set kI = kD = 0 and increase the
proportional gain kP until the system is oscillating around the set value with a
constant amplitude. This value of kP is then defined as kcrit and the time period
as Tcrit. If kP > kcrit the system is also oscillating but the amplitude is increasing.
For kP < kcrit the error is a decaying oscillation that has a constant long-term
drift. Once the critical parameters are found, the Ziegler-Nichols method predicts
following optimum values for the gain parameters:

kP TI TD

P 0.5kcrit
PI 0.4kcrit 0.8Tcrit

PID 0.6kcrit 0.5Tcrit 0.125Tcrit
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Figure 3.8: Response of the error signal to a step in the control system with a
PI-controller. The blue dots show the measurement data with error bars and the
red line is the fit. The fit function A sin(!t� �) exp(��t) is a damped harmonic
oscillator with angular frequency !, amplitude A, phase � and an exponential
decay rate �. The change of temperature was from Tinit = 22.8 �C to Tfinal =
23.3 �C.

You can see that the method is also described if the feedback loop just contains
a P- or PI-controller. For further reading about feedback systems Ref. [25] is
recommended.
Let us show the e↵ect of the integral and derivative term based on our temper-
ature control system. The coe�cients can be tuned by four potentiometers on
the circuit board of the controller, of which three belong to the gain coe�cients
and one adjusts an o↵set of the error signal. The set temperature itself can be
changed by a potentiometer on the front panel of the controller and the error
signal can be monitored on a scope of which the measurement error was assumed
to be ±1 mV. First, the I- and D-term were set to zero and the P-term increased
such that after changing the set temperature about 0.1 K the error signal is an
oscillation with constant amplitude. The result is shown in Fig. 3.7. The oscilla-
tion has not exactly a constant amplitude but is slightly decreasing that indicates
a too low gain coe�cient. In the beginning the amplitude was, even at the max-
imum value of kP, decreasing much more. For this reason we had to decrease the
internal resistor R442 of the circuit board from initially 10 k⌦ to 3.24 k⌦ and
therefore could increase kP by a factor of about 3. Because at the maximum value
of kmax

P the result in Fig. 3.7 has compared to the periodic time an almost con-
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stant amplitude the resistor was not changed again and we assumed k

max
P = kcrit.

The requirement to change the resistor to get a larger proportional gain than in
the beginning could be caused by the large thermal mass of the aluminum block
of our system. By fitting a sine function to the data with respect to the measure-
ment error, we determined the critical time to be Tcrit = (51.89±0.01) s. Now the
optimum gain coe�cients could be set by the Ziegler-Nichols method. Thus kP
can be chosen but unfortunately we do not know an absolute value of the integral
and derivative gain, so we had to find the optimum values by trial and error. First
the integral gain was increased and the proportional gain decreased which led to
an underdamped oscillation as shown in Fig. 3.8. The criterion for optimizing
the integral gain was to find a fast decaying oscillation but still short oscillation
period. If the integral gain is too low, the system will drift in the long-term. For
our system the optimum value of kI was found to be a potentiometer position of
about 0.7± 0.1, if we assume a potentiometer range [0, 1]. At last the derivative

� �� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

���

���

� (�)

�
(�
)

Figure 3.9: Response of the error signal to a step in the control system with a
PID-controller. The blue dots show the measurement data with error bars and
the red line is the fit. As in Fig. 3.8, a damped harmonic oscillator is the fit
function. The change of temperature was from Tinit = 22.8 �C to Tfinal = 23.3 �C.

term has to be set. When this term is turned on, the damping of the oscillation
increases where a too large value of kD leads to an overdamped oscillation of the
error signal and to a very slow convergence to the steady state. The derivative
term was carefully increased until the oscillation was critically damped ideally.
In our case also kP and kI were fine-tuned to find the best parameters where the
system reacts fast to a temperature change and reaches the equilibrium in a short
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time while maintaining a long-term stability. The best parameters normalized to
the maximum value of the potentiometer scale are found to be

kP

k

max
P

= 0.7± 0.1,
kI

k

max
I

= 0.7± 0.1,
kD

k

max
D

= 0.25± 0.1 (3.2)

The error signal of the optimized PID temperature controller of the laser is shown
in Fig. 3.9. From the exponential envelope of the fitted damped oscillator, the
time ⌧ when the error |e(t > ⌧)| < 10 mV resp. the di↵erence between the set
and actual temperature |Tset � Tact| < 10 mK is ⌧ = (151.1+5.6

�0.7) s. The errors are
not only due to the measurement error of the scope but also to the time I needed
to enter the set temperature and adjust the scope time to zero.
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Chapter 4

Optical setup

In this chapter the optical setup outside of the laser cavity is described. The
aim is to couple the laser beam with high e�ciency into optical fibers that can
transmit light between the optical tables. A small amount of light is coupled
into a fiber which is connected to the wavemeter to determine the wavelength
of the laser. Most of the power is fed into another fiber that is later used for
the experiment. First I will discuss some general features of the optical setup
shown in Fig. 4.1. Afterwards I discuss anamorphic prism pairs that I mounted
to shape the beam of my laser. An accurate beam shape is required for e�cient
fiber coupling [12, 16].

Figure 4.1: The optical setup on the bread board where the laser cavity is
mounted. The optics should shape the beam provide two fiber ports.
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4.1 General Features

Here, I would like to present some features that can be found in most of the
optical setups. With this knowledge the reader can already get an orientation in
the zoo of optics in a laboratory.

�/2-waveplate The electromagnetic wave emitted by a laser has a defined
polarization. A �/2-waveplate consists of a double-refracting crystal that has an
anisotropic structure with one axis preferred that we call the optical axis. This
anisotropy leads to an index of refraction that depends on the polarization of
the propagating light. The crystal of the waveplate is cut in such a way that its
optical axis lies in the plane of the waveplate. The polarization of the incoming
light is after traveling through the waveplate mirrored on the plane defined by
the optical axis. By rotating the waveplate, the optical axis rotates and therefore
the change in angle of the incoming and outgoing light can be chosen. Thus, an
arbitrary linear polarization can be obtained.

Polarizing Beam Splitter A PBS splits light into its s- and p-polarized parts.
The polarization selecting element is a dielectric coating that transmits light with
e.g. p-polarization and reflects light with s-polarization at a 90� angle. Usually
�/2-waveplates and PBS are used in combination. By putting the waveplate in
front of the PBS the ratio between reflected and transmitted light can be tuned
if the waveplate is rotated.

Optical Isolator An optical isolator is the counterpart of an electrical diode
because light can only be transmitted in one direction and light traveling the
opposite direction is blocked. The optical isolator is required to protect the laser
diode from undesired back-reflections that can occur on optical elements. The
physical e↵ect behind an optical isolator is the Faraday e↵ect. By applying a mag-
netic field to a material, the symmetry can be broken and the index of refraction
di↵ers between left- and right-circularly polarized light. If linear polarized light
propagates through this medium the polarization is rotated by an angle that
depends on the magnetic field, the traveled distance and the material-specific
Verdet constant. The direction of rotation does not depend on the direction of
propagation of the light. Thus, the polarization of a light wave is rotated by
45�, for instance, during propagation through the medium. By putting a mirror
behind the optical isolator, the light now propagates in the other direction. The
polarization is again rotated in the same direction as before and now is perpen-
dicular to the one in the beginning. If a polarization filter parallel to the incoming
wave is put in front of the medium and another filter rotated by 45� at the back,
an optical isolator is created. The light from one direction is transmitted where
light coming from the other direction hits the polarization filter with an angle of
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90� and cannot pass the isolator.

Fiber coupling An optical fiber is an element that can guide light along its
path ideally without any losses. Fibers have become integral parts in communi-
cation technology due to pioneering developments in the last decades. The idea
can be understood by geometrical optics. If a ray of light coming from an optical
medium with refractive index n1 hits the surface of a di↵erent optical medium
with n2 and furthermore n1 > n2, then the ray is reflected and not transmitted if
the angle of incidence ✓ > arcsin n

2

n

1

that is simply given by Snell’s law. This e↵ect
is the so-called total internal reflection. An optical fiber is using this physical
e↵ect by consisting of two di↵erent glasses resp. indices of refraction. The inner
core has a lower refractive index than the cladding layer and the light that fulfills
the condition for total internal reflection is guided along the fiber. If we now go
one step further and think about electromagnetic waves, the Maxwell equations
have to hold for light in the fiber. This means that the electromagnetic field
distribution in the fiber is given by solutions of the Maxwell equations that fulfill
the boundary conditions given by the refractive materials and dimensions of the
glass layers. This solutions are called the eigenmodes of the optical fiber and
are given by the Bessel functions if we assume a step-like profile of the refractive
index and a cladding layer whose radius is much larger than the wavelength. A
derivation of the eigenmodes can be found in Ref. [12]. The number of solutions
is determined by the radius of the core. If there is just one solution, the fiber is
said to be single-mode, if there are more than one, it is called multi-mode. The
advantage of single-mode fibers is that the light emitted from the fiber is in the
lowest order gaussian mode that we will get to know later in Ch. 5.1.1. But to
have light emission from the fiber, the light first has to be coupled into the fiber
on the other end. Because the core of a single-mode fiber has a diameter of just
a few µm this has to be done by a precise alignment. The coupling e�ciency is
determined by the overlap integral of the mode of the incoming beam and the
eigenmode of the fiber. Since the characteristic size of the mode is given by the
core’s diameter, the beam first has to be focused. This can be done with an
aspherical lens with a short focal length. Because the fiber has a cylindrical sym-
metry, the eigenmode is rotationally invariant. Thus the profile of the incoming
laser beam has to be circular to maximize the overlap integral. Therefore the
beam has to be shaped which can be done using an anamorphic prism that is
discussed in the next section.

4.2 Anamorphic Prism Pair

A pair of prisms can be used to change the diameter of the beam along one axis
while the other axis remains una↵ected. Because of the shape of a prism the light
has to pass di↵erent optical path lengths and thus the diameter of the beam can
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be either compressed or expanded. Let us first consider a transition of a beam
from a medium with refraction index n1 into a medium with index n2. As shown
in Fig. 4.2a the incident beam has diameter d1 and an angle of incidence ✏. The

(a)

(b)

Figure 4.2: The incoming beam has diameter d1 and the outgoing beam has
diameter d2. Panel (a) shows the transition of a beam from one medium to
another. The diameter of the beam changes dependent on the angle of incidence.
Panel (b) shows the situation for a prism pair. The functional relation between
those is depend on all four di↵ractions.

diameter d2 of the transmitted beam is then given by

d2 = d1
cos ✏0

cos ✏
= d1

cos arcsin
�

n

1

n

2

sin ✏
�

cos ✏
, (4.1)

where ✏

0 is the angle of di↵raction and Snell’s law, n1 sin ✏ = n2 sin ✏0, is used
[16]. For the situation of the prism pair, Eqn. (4.1) has to be applied for four
surfaces where the angles of incidence have to take the position of the prisms into
account. These positions should be described by the angle to the normal of the
optical axis and prism’s surface as you can see in Fig. 4.2b. The ratio between the
beam diameters is defined as the magnification M = d

1

d

2

. This magnification M

has in general a complicated form and because it would not bring a huge benefit
to show it here, the formula can be found in appendix C. Instead we concentrate
on the result. In Fig. 4.3a we plot the magnification factor M in dependence on
the angle ↵2 for di↵erent angles ↵1. You can see that the magnification grows
approximately linearly for angles up to about 20� while keeping ↵1 fixed. For
larger angles correspondingly larger magnifications the gradient increases and
even starts to diverge which is due to total internal reflection. Moreover, the
choice of angles is not unique. Fig. 4.3a shows the angle � which we would like to
be near zero because this means the trace of the beam is just shifted but has still
the same direction of propagation. This condition might restrict the combination
of angles as well as losses due to reflection.
Let us now consider the laser beam coming out of the laser I built. By eye the

42



-�� � �� �� ��
���

���

���

���

���

���

α� (°)

�

(a)

-�� � �� �� ��
-���

-���

���

���

α� (°)

δ(
°)

(b)

Figure 4.3: The left panel shows the magnification factor of a prism pair and the
right panel the angle between the outgoing beam and the optical axis versus ↵2.
The refractive indices are assumed to be n1 = 1 and n2 = 1.7767 which is the
refractive index of NSF11 glass for � = 689 nm. The colors belong to di↵erent
angles ↵1 as follows: Red ! �3�, Green ! 0�, Orange ! 5� and Blue ! 12�

beam already looked elliptical so that the beam definitely had to be shaped.
The beam was first investigated by a CCD camera and the beam profile software
RayCi. As we will see in Ch. 5.1.1 the divergence of a gaussian beam depends
on the width of the beam waist. So the shape of an elliptical beam will change
itself while propagating. For this reason the camera was not put directly in front
of the laser cavity but in a distance of about 36 cm away from the laser’s case (a
rough estimation of the distance to the fiber port used later). The observed beam
shape without an anamorphic prism pair is shown in Fig. 4.4. The shape of the

Figure 4.4: The laser beam shape in a distance of ⇡ 36 cm from the cavity case
detected with a CCD camera. Areas of high intensity are colored in red and areas
of low intensity in blue. The di↵raction rings might be created by dust on the
camera.

beam in the vertical direction looks already nicely gaussian while the horizontal

43



direction is not just a gaussian intensity profile with broader width than the
vertical but it has fringes. This can be indicated by several factors. Firstly,
sphercial abberation might occur on the (asphercial) collimation lens or on the
Brewster window. Secondly, the gaussian beam can lead to a di↵erent intensity
pattern than expected by Eqn. (2.25) at the grating. Thirdly, the transverse mode
of the semiconductor laser diode has the shape shown in Fig. 4.4 that can be due
to the small dimensions of the light emitting area realted to the wavelength
[10]. By compressing the beam, we will have additional e↵ects of interference
that occur between the fringes. Note that the considerations about the prism
pairs were presented in terms of ray optics. Nevertheless, we can approximate a
collimated gaussian beam as a ray in geometrical optics. Unfortunately the mode
of our beam is not very gaussian, so I had to find optimum position of the prisms
by observing the beam shape on the camera. Fig. 4.5 shows the result which
was again observed by the beam camera at the same distance as before. Now the
gaussian mode can be seen in both the horizontal as well as the vertical direction.
A gaussian fit was made by the beam profile software which gives a major width

Figure 4.5: The shape of the laser beam in distance of ⇡ 36 cm from the cavity
case. Here a self-mounted prism pair was put in the beam’s path. The ellipticity
of the gaussian fits is ✏ = 0.917

wmajor = 0.807 mm and a minor width wminor = 0.740 mm that describe the
full width where the intensity decreased by a factor of 1/e2 with respect to the
peak intensity. This corresponds to an ellipticity of ✏ := w

minor

w

major

= 0.917. The
beam could be shaped to an almost circular gaussian mode that is an important
requirement for a high coupling e�ciency into the fiber. After the beam was
shaped, the final position of prism’s angles are ↵1 ⇡ 0� and ↵2 ⇡ 25�. The plots
in Fig. 4.3b predict a magnification of 2.5 � 3 for this values. From Fig. 4.4 we
would expect a magnification in the range 4 � 5 and thus we can see that the
fringes of the initial beam are not negligible in our case. To conclude, a formula
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for the expansion and compression of ray was derived and is expected to hold
for collimated gaussian beams. For beams that di↵er due to e.g. abberations,
the model would have to be extended. The self-mounted prism pair was able to
shape the beam profile to a gaussian beam by optimization of the angles and a
transmission of 95.5% could be reached. Combined with the use of an aspherical
lens with f = 6.24 mm, we obtain a fiber coupling e�ciency of 60%. This result
is satisfying but might still be optimized by the use of a di↵erent lens. Since the
e�ciency was reached with both a f = 6.24 mm and f = 5.0 mm lens, it leads
to the assumption that the optimum fiber coupling e�ciency can be reached by
a lens with a focal length in between.
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Chapter 5

Performance of the Laser

The Littrow laser I built during my Bachelor’s project will later be a part of
the Strontium experiment. The laser has to work properly in terms of a stable
wavelength and a narrow linewidth. Towards these goals, the external noise was
reduced by prevention of temperature fluctuations with the PID temperature
controller discussed in Ch. 3.9.2, filtering of high frequency noise in the current
by the protection board described in Ch. 3.5.2 and damping of vibrations of the
external cavity by the choice of the design [1]. At last the light emitted from the
laser should be analyzed with regard to its frequency spectrum.

5.1 Mode-Hop-free Tuning Range

A coherent beam of radiation from a laser will only be emitted if the gain medium
is within an optical resonator (Ch. 2.3). The resonator then also works as a
frequency selective element. In our case, if the grating arm is scanned by the
piezo to scan the wavelength of the laser, the properties of the cavity change and
the laser can jump to a non-desired wavelength. This is called a mode-hop. We
discuss in the following section where the additional frequency selection of the
cavity comes from and how mode-hops are suppressed in my laser.

5.1.1 Optical Resonators and Gaussian Beams

Optical resonators are formed by two mirrors and characterized by the curvatures
of the mirrors ⇢

i

, their reflectivities R
i

and the distance L between the mirrors.
If light enters the cavity, it is reflected on both ends and travels back and forth.
Because light is an electromagnetic wave, boundary conditions given by the mir-
rors have to be fulfilled. Two plane mirrors form a so-called Fabry-Pérot-Etalon
[12, 16]. For ideal mirrors with reflectivity R = 1, the electromagnetic wave has
to vanish at the ends of the cavity and a standing-wave is created. This boundary
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condition can be written as

m

�

2
= L , ⌫

m

= m

c

2L
, m 2 N, (5.1)

where � is the wavelength, ⌫ the frequency of the electromagnetic wave and c the
speed of light, and we used c = �⌫. This shows that only a discrete spectrum of
waves are in resonance with the cavity. Moreover, we define the distance between
two resonance frequency as the free spectral range:

�⌫fsr =
c

2L
(Free Spectral Range) (5.2)

The di↵erent resonance frequencies ⌫
m

are associated with the longitudinal modes
of the cavity.
Let us consider the more realistic model of two mirrors with finite reflectivity R.
To calculate the transmittance T of the cavity we have to take interference into
account. An electromagnetic wave E(⌧, x) = E0 exp[i(!⌧ � kx)] enters the cavity.
After each round trip in the cavity the wave gets a phase factor of exp(�2ikL) and
the amplitude is lowered because of the finite reflectivity of the mirrors. Thus,
the wave after one round trip reads E(⌧, x) = E0r

2
t exp[i(!⌧ � kx� 2kL)], where

r and t are the complex reflectivity and transmittance coe�cients with |r|2 = R

and |t|2 = T . The wave then gets reflected again and after a second round trip it
reads E(⌧, x) = E0r

4
t exp[i(!⌧ � kx� 4kL)] and so forth. The transmitted wave

in the steady-state is therefore an interference of infinitely many reflected waves
in the cavity,

E(⌧, x) = E0t
2 exp[i(!⌧ � kx)]

1
X

n=0

r

2n exp(�2inkL), (5.3)

where the additional factor t comes from the transmission when the wave is
leaving the cavity. The sum can be evaluated for |r2 exp(�2ikL)| < 1 by the
geometric series and we find

E(⌧, x) = E0t
2 exp[i(!⌧ � kx)]

1

1� |r|2 exp(�2ikL)
. (5.4)

Because the physical observable is the intensity, we are interested in this quantity
and calculate

I

I0

=
|E|2

|E0|2
=

(1�R)2

1 +R

2 � 2R cos(2kL)
=

1

1 +
�

2F
⇡

�2
sin2

�

⇡⌫

⌫

fsr

�

, (5.5)

where we used 1 � R = T , the free spectral range (Eqn. 5.2) and defined the
Finesse

F :=
⇡

p
R

1�R

(Finesse). (5.6)
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We see that the normalized transmitted intensity through a Fabry-Pérot-Etalon
is described by an Airy function in frequency space. The Finesse is an important
characteristic for cavities and is best illustrated by a plot of the Airy function
for di↵erent F as shown in Fig. 5.1. The Finesse corresponds to the width of the
peaks in the intensity pattern where a high finesse is correlated to narrow peaks
and thus a precise frequency selection. A high finesse can be reached by high
reflectivities of the mirrors.

� � � � � �
���

���

���

���

���

���

ν/ν���

�/�
�

Figure 5.1: The transmitted intensity of a Fabry-Pérot-Etalon in frequency space
for di↵erent values of the Finesse F. For the blue plot F = 2, for the red plot
F = 10 and the green plot shows F = 100. The distance between two peaks is
the free spectral range ⌫fsr.

Now we want to consider mirrors that are not flat but instead mirrors with
radius of curvature ⇢0 := ⇢1 = �⇢2 = L, where L is again the cavity length at
the optical axis. This is a so-called confocal cavity. Because laser beams are not
infinitely extended waves but are spatially confined, we briefly discuss gaussian
beams in the following to find the resonance condition for the confocal cavity
later on. Gaussian beams are solutions of the Maxwell equations in the paraxial
approximation and especially describe laser beams. They are assumed to change
much slower in the transverse x-, y-direction than in the axial z-direction. The
lowest order solution has a gaussian intensity profile in the x and y direction
centered at the optical axis and is equated to a “gaussian beam” in this thesis.
The functional form of the electrical field is given by

E(r) = E0
w0

w(z)
exp

h

� (x2 + y

2)

w

2(z)

i

exp
h

� ikz � ik

(x2 + y

2)

2⇢(z)
+ i⇣(z)

i

(5.7)
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Let us introduce the new variables step by step. The spatial extension in the x

and y directions of the beam is given by the beam width w(z). This width is the
distance from the optical axis where the beam intensity decreased to 1/e2 with
respect to the peak intensity. The beam width w(z) varies in the z direction with

w(z) = w0

r

1 +
⇣

z

z0

⌘2

, (5.8)

where w0 is the beam waist and thus the tightest beam width is at z = 0.
Furthermore z0 is the Rayleigh range and at z = z0 the width has increased by a
factor of

p
2. The beam waist and Rayleigh range are related by

w

2
0 =

�z0

⇡

. (5.9)

For z ⌧ z0 the beam width Eqn. (5.8) can be approximated by w(z) ⇡ w

0

z

0

z

and we see that the size of the beam increases linearly with a divergence angle
of tan ✓div = w

0

z

0

= �

⇡w

0

. So if the beam is focused to a smaller beam waist it
diverges more. The wavefront, which is the surface of constant phase of the
electromagnetic wave, is curved. The radius of curvature is given by

⇢(z) = z



1 +
⇣

z0

z

⌘2
�

. (5.10)

At the position of the beam waist (z = 0) the radius of curvature diverges and
the wavefront is a plane. For |z| > 0, ⇢(z) gets more curved and for z ! 1 the
wavefront becomes a spherical wave. The phase is also shifted in the direction of
propagation by the Gouy phase

⇣(z) = tan�1 z

z0

. (5.11)

Within the the Rayleigh range from �z0 to z0 the phase gets an additional shift
of ⇡/2. A detailed description of gaussian beams and e↵ects of optical elements
on it, can be found in the review Ref. [26].
Let us apply this knowledge about gaussian beams to find the resonance con-
ditions for the confocal cavity and the profile of the gaussian beam within the
resonator that is sketched in Fig. 5.2.

The boundary conditions are easy to find. Because the electrical field has to
vanish on the mirrors, the wavefront has to coincide with the curved mirrors. So
we know that ⇢(z) = ⇢0 and from this condition we already can calculate the
other parameters of the beam. From ⇢(z) we get the Rayleigh range and from
this the waist radius, and thus everything is defined:

z0 =
L

2
, w

2
0 =

�L

2⇡
(Confocal cavity) (5.12)
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Figure 5.2: The figure shows two curved mirrors that form a resonator. The mode
of the cavity is a gaussian beam. For a confocal cavity it holds ⇢1 = ⇢2 = L.

At last we have to consider the phase to find the resonance conditions. To have
a standing wave in steady-state, the phase has to be the same after each round
trip. From our boundary condition we know that the phase is the same on the
surface of the mirrors, so we can calculate the phase shift of a round trip on an
arbitrary point, so we choose the optical axis where x = y = 0. By Eqn. (5.7) the
phase shift is given by twice the propagation to the other end of the cavity, and
we get 2kL� 2�⇣ and �⇣ = ⇣(L/2)� ⇣(�L/2) = ⇡/2. To get a standing wave,
the phase has to change by a multiple of 2⇡ and we obtain for the resonance
frequencies

2kL� ⇡ = m2⇡ , ⌫

m

=
⇣

m+
1

2

⌘

⌫fsr, m 2 Z. (5.13)

Again our free spectral range is ⌫fsr = c

2L
which is the distance between the

resonance peaks. Compared to the Fabry-Pérot-Etalon, the peaks are shifted by
a constant value in frequency space.
If the same considerations are done for higher transverse modes than the gaussian
mode one can find that additional resonance frequencies appear. In a confocal
cavity, we find

⌫

l,n,m

= m⌫fsr + (l + n+ 1)
⌫fsr

2
, (5.14)

where the indices l, n count the higher order transverse modes. A deeper insight
to cavities is presented in Ref. [12]. In the next section a confocal cavity is used
to optimize the mode-hop free tuning range and later the linewidth of the laser
is compared to a cavity.

5.1.2 Optimization of the Mode-Hop-free Tuning Range

With the knowledge about resonators we can understand why the longitudinal
mode of the laser can suddenly hop to a di↵erent mode when the piezo at the
grating arm is scanned. By scanning the piezo, not only the angle of incidence to
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the grating changes but also the length of the external cavity varies slightly and
thus the resonance frequency shift [27]. To scan the laser smoothly the frequency
of the peak intensity of the grating’s di↵raction order as well as the cavity’s res-
onances have to be displaced by the same frequency interval. Because we cannot
control the grating’s angle and cavity length independently, the frequency dis-
tribution changes di↵erently as you can see in Fig. 5.3. The two di↵erent plots
show the e↵ect of the rotation of the grating. While the center frequency of the
grating is shifted, the cavity resonances are changed much less here and you can
see that in Fig. 5.3b suddenly two resonance frequencies now have similar inten-
sities. Because the frequencies which are in resonance give feedback to the laser
diode, the laser can run in more than one mode or the lasing frequency can jump.
This is called a mode-hop. Because we want the laser to be scanned continuously
mode-hops have to be suppressed. To see the mode-hops, I coupled my laser into
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Figure 5.3: The two plots show the frequency selection of the grating and a
cavity. The red dashed line is the intensity pattern of a grating and the green
line indicates the resulting resonance frequencies of the grating and the cavity.
Panel (a) shows the position of the grating in the beginning and panel (b) a
rotation of the grating regarding to the Littrow configuration. Here the resonance
frequencies shift much slower than the one of the grating.

an additional confocal external cavity with a radius of curvature ⇢0 = 100 mm
and measured the transmission on a photodiode (Thorlabs APD410A2/M). The
idea is to then scan the laser as well as the confocal cavity length by a piezo and
observe the transmission signal on the scope while the confocal cavity is scanned
much faster than the laser. By setting the trigger to the fast cavity modulation,
we see a comb of transmission peaks and the slow laser modulation shifts the
peaks so that their path on the scope can be followed by eye. If the transmission
peaks do jump, a mode-hop is seen.
The optical setup is shown in Fig. 5.4. First the laser beam has to be aligned
to the cavity. Because we know the shape of the gaussian mode in the cavity
from Eqn. (5.12), we try to form the laser beam as good as possible by lenses
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to match the cavity mode. For this, the beam propagation was simulated by
the software GaussianBeam [28] on the server of our lab and the result was, to
use a focal length f1 = 6.24 mm for the fiber out-coupling, and a second lens
with f2 = 100 mm at an approximate distance of 30 cm from the first lens to
shape the beam. For alignment the cavity length was scanned to be sure to fulfill

Figure 5.4: The optical setup to couple the laser beam to the cavity and measure
the transmission signal. Two lenses with f1 = 6.24 mm and f2 = 100 mm are
used to shape the beam. For a better signal the photodiode (PD) was put into
the focus of a f = 50 mm lens. To also observe the beam profile on a CCD, a
Non-Polarizing-Beam Splitter (NPBS) divides the beam.

the resonance condition at some time and see transmission. The first signal on
the scope shows equidistant peaks while the number increases when the scanning
amplitude is increased because then the resonance condition is fulfilled more of-
ten within one period. If the beam is observed on the beam profile camera, the
beam does not look gaussian because higher order transverse modes can also be
seen. Thus, the resonance peaks are given by Eqn. (5.14) with contributions from
l, n 6= 0 that gives resonances between two peaks of distance ⌫fsr. To align the
cavity now to the lowest order transverse mode with l = n = 0, we minimize
every second peak on the scope that are odd multiples of ⌫fsr/2. This can be
seen in Fig. 5.5. Once the cavity is aligned, the mode-hop-free tuning range can
be determined. For this measurement, the cavity was scanned with an ampli-
tude chosen such that two peaks can be seen within one period and the scope
was triggered with this frequency. Then the amplitude of the piezo in the laser
cavity was increased and the peaks began to shift on the scope. Every time a
mode-hop happens the peaks jump. If the laser scanning amplitude is increased,
the grating will be rotated by a greater angle and more mode-hops are observed.
As described above, we have to suppress the mode-hops and we can do this by
changing the parameters temperature T and current I. The temperature a↵ects
the cavity length and the refractive index of the semiconductor laser diode de-
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Figure 5.5: The picture on the scope where the blue line corresponds to the
photodiode signal and the orange one is the trigger signal of the cavity length
scanning piezo. The blue peaks between the two orange steps are the resonance
peaks when the voltage is ramped up. The peaks where the step of the orange
signal is, appear because the voltage on the piezo is ramped down in a faster time
than ramping up but still in a finite time. In panel (a) you see the situation where
higher transverse modes are excited in the cavity. After aligning those higher
modes can be suppressed and only the peak that belongs to a even multiple of
⌫fsr/2 survives as you can see in panel (b).

pends on temperature and therefore also on the current. A change in T and I

a↵ect therefore the optical length of the cavity [22]. The idea is to simultaneously
modulate the voltage applied to the piezo and the current running through the
laser diode with the help of a feed-forward system in the scan controller. An in-
ternal setting on the Toptica SC 110 controller was tuned which determines how
much the current is changed for a certain piezo voltage. My procedure was to
step-by-step increase the amplitude of the piezo until mode-hops appear on the
scope. If the mode-hops could not be removed by tuning the o↵set of the piezo
voltage, the feed-forward was tuned until the laser frequency was scanned con-
tinuously. Then again the amplitude was increased and the procedure repeated.
If the mode-hops could not be suppressed by the feed-forward, the set current on
the current controller was changed. All steps were iterated for di↵erent currents
and piezo o↵set voltages. As soon as the settings with the largest piezo ampli-
tude of the laser were found, the wavelength was observed on a wavemeter. To
center the scanned interval around the desired wavelength of � = 689.4487 nm,
the temperature was taken into account. By increasing the temperature the las-
ing center wavelength also increases because at a higher temperature the optical
path length in the cavity is larger. If we think about the boundary condition of
a Fabry-Pérot-Etalon (Eqn. 5.1), the resonance wavelength is proportional to the
cavity length. Obviously by changing the temperature to center the wavelength,
the feed-forward and current have to be adjusted again slightly. In the end, the
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frequency interval that can be scanned without having a mode-hop was read out
on the wavemeter. I was able to optimize the mode-hop-free tuning range up to
(15.3 ± 0.05) GHz @ Tset = (20.3 ± 0.05) �C and @ Iset = (148 ± 0.5) mA. The
error of the mode-hop-free tuning range is due to drifts on the MHz scale. They
probably appear because the system is not thermalized while scanning which
leads to fluctuations. The errors of the temperature and current are because the
values on the Toptica controller are rounded to finite digits. The set current was
read-out on the Toptica controller and is not the same as the current flowing
through the laser diode because of the protection board (Ch. 3.5.2).

5.2 Linewidth

As a final step the frequency spectrum of the laser was analyzed. The spectrum
of a laser is often assumed to be monochromatic but this is an ideal picture. In
reality the electromagnetic spectrum of a single-mode laser is a peak around a
center wavelength and an usual characteristic value of a laser’s performance is
the linewidth that is the FWHM of this peak. In the following the linewidth
was measured by two di↵erent methods and compared to a commercial Toptica
narrow-linewidth 689 nm laser.

5.2.1 Linewidth Measurement with a Cavity

The first method to measure the linewidth uses the confocal cavity described in
Ch. 5.1.2. For a high Finesse F the peaks of Eqn. (5.5) can be approximated by a
comb of lorentzian functions. Let us assume that the linewidth of the laser is also
a lorentzian function. This is valid because in Litrrow lasers the allowed lasing
frequencies are determined by the external cavity. A lorentzian function g(⌫) is
given by

g(⌫) =
1

⇡

�⌫/2

(⌫ � ⌫0)2 + (�⌫/2)2
, (5.15)

where the center angular frequency is at ⌫0 and �⌫ is the FWHM. If the con-
focal cavity is scanned in length, the resonance peaks shift back and forth in
frequency space. If the laser is mode-matched to the cavity and the transmission
is observed, then the Airy function resonance shape of the cavity is shifted across
the lorentzian line shape of the laser in frequency space. The measured intensity
spectrum is the convolution of the laser’s and cavity’s linewidth. Since we can ap-
proximate the peaks of the Airy function by lorentzians, this convolution is again
a lorentzian function but with�⌫ = �⌫laser+�⌫cavity and ⌫0 = ⌫0,laser+⌫0,cavity. To
determine the linewidth of the laser I built, the linewidth or Finesse of the confocal
cavity is required which has to be measured first. Thus, I used a commercial Top-
tica laser that also runs at a wavelength of 689 nm where the datasheet promises a
linewidth of < 50 kHz. For the measurement, the piezo of the confocal cavity was
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modulated with a frequency of about 13 Hz and the amplitude was low enough to
see just two resonance peaks. This should minimize the error that occurs from the
hysteresis of the piezo but we required at least two resonances to determine the
free spectral range and therefore to have a scale to convert from time to frequency
units. Figure 5.6 shows the result of this measurement with a lorentzian function
fitted. The width of the lorentzian is �⌫Toptica = (1.61+0.084

�0.078) MHz. There are
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Figure 5.6: The plot shows the photodiode signal of the transmission through
the confocal cavity with a narrow-linewidth laser. The model for the fit function
is a lorentzian whose FWHM was determined to be �⌫ = (1.61+0.084

�0.078) MHz.

di↵erent errors in this measurement. First, we have the measurement errors of
the scope that were assumed to be ±1 mV. Second Thorlabs predicts a relative
error of the photodiode output signal of ±3%. Those two errors are negligible
with respect to the third one which is related to the cavity properties. I did not
characterize the cavity further and because it is mounted in a brass spacer, the
cavity length was only roughly measured so that I assumed L = (100 ± 5) mm.
We can also see from the data points in Fig. 5.6 that the cavity is not perfectly
confocal because the peak is slightly asymmetric. An asymmetry would also be
justified if the cavity length does not match the radius of curvature of the mir-
rors. Then the resonance condition Eqn. 5.14 would no-longer be degenerated for
even multiples of ⌫fsr so that the peaks split up. For a small error this leads to
asymmetric peaks.
The overlap time of the laser and cavity resonance is approximately T = 200 µs,
so we should take into account that the results we obtain for the linewidth mea-
surement also depend on the time. From the measured result for the convolution,
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we see that the linewidth of the cavity is in the MHz range and the Toptica laser
which has a linewidth smaller than 50 kHz for T = 5 µs does not contribute a
lot to the convolution if we assume that linewidth is still in the 10 kHz range for
200 µs. Let us now compare the result to the same measurement done with the
home-built laser. The experimental conditions were identical to the ones above.
The measured photodiode signal and the fitted lorentzian are shown in Fig. 5.7.
The FWHM of the lorentzian is given by �⌫home�built = (1.82+0.096

�0.086) MHz. The
errors occur from the same arguments as above. We see that the laser I built has
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Figure 5.7: The plot shows the photodiode signal of the transmission through
the confocal cavity with the laser I built. The fitted lorentzian function has a
FWHM �⌫ = (1.82+0.096

�0.086) MHz.

a larger linewidth than the commercial laser. For the di↵erence of the FWHM of
the both lasers we get �⌫ := �⌫selfmade��⌫Toptica = (212+12

�8 ) kHz for T = 200 µs.
The errors from the di↵erence in cavity length do not add up because it is a
systematic error in both measurements. If we assume that �⌫Toptica ⌧ 50 kHz,
then �⌫selfmade ⇡ �⌫. In Reference [1] a linewidth of 254 kHz for T = 100 µs
was reached for their 689 nm laser which shows that we have a slightly narrower
linewidth even for a longer measurement time. Since the grating and mechanical
design they use is the same, it might be caused by the di↵erent laser diode model
that we used.

5.2.2 Heterodyne Linewidth Measurement

In this section, I would like to present an alternative method to measure the
linewidth of a laser by forming a beatnote between the beam of the laser I built
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and the Toptica laser. This means that the two laser beams interfere and the
intensity pattern is observed on a photodiode as a function of time. By now we
considered the light emitted from a laser as an overlap of a continuous distribution
of frequencies. This distribution was assumed to be a lorentzian function with
a defined linewidth. Let us now think about a di↵erent picture. Here, the laser
light is described as a single harmonic wave with one fixed angular frequency !0

but with a phase �(t) that is dependent on time. Thus the electromagnetic field
at a certain position is given by E(t) = E0 cos

⇥

!0t��(t)
⇤

. The counterpart to the
linewidth is the jitter of the phase in this picture. Since the total phase change
will be di↵erent within a shorter or a longer time interval and we transferred
this to be a measure of the linewidth, we have to be careful when we talk about
the linewidth. A more accurate way is to define the linewidth within a certain
interval of measurement time.
If we now overlap two waves with angular frequencies !1 and !2, phases �1(t)
and �2(t) and for simplicity E0 = E0,1 = E0,2, the intensity is

I(t) _
�

�cos
⇥

!1t� �1(t)
⇤

+ cos
⇥

!2t� �2(t)
⇤

�

�

2

= A+ cos
⇥

(!1 + !2)t� (�1(t) + �2(t))
⇤

+ cos
⇥

(!1 � !2)t� (�1(t)� �2(t))
⇤

, (5.16)

where A summarizes the terms proportional to the intensity of each beam. The
second term is a cosine and for optical frequencies !1,!2, it is oscillating so fast
that it cannot be detected by a photodiode. For small detunings �! = !2 � !1

the last term can be in the range of radio frequencies and can indeed be detected
by fast photodiodes [29]. This method to create new frequencies from two initial
frequencies is called the heterodyne technique. What we expect to see on the
scope is a sine wave but with perturbations due to the changing phase. To
determine the linewidth from this signal, we could observe it with a spectrum
analyzer. This analyzer requires a minimal signal duration and because we saw
that the linewidth should be specified within a certain time interval, it would
have a lower boundary given by the spectrum analyzer. Thus we use a di↵erent
technique to get the power spectrum. The Wiener-Khinchin theorem states that
the power spectral density PSD(⌫) of our beatnote signal x(t) is the Fourier
transform of the autocorrelation function �

xx

(⌧) of the signal [30]:

PSD(⌫) =

Z +1

�1
�
xx

(⌧)e�2⇡i⌫⌧
d⌧ (5.17a)

�
xx

(⌧) := hx(t)x⇤(t� ⌧)i = lim
T!1

1

T

Z

T

0

x(t)x⇤(t� ⌧)dt (5.17b)

Because in our case the digital scope gives the beatnote signal x(t) as a discrete
function the integrals have to be replaced by sums.
The optical setup for our measurement is shown in Fig. 5.8. The two lasers were
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also coupled to the wavemeter and the laser I built was tuned by the piezo such
that the detuning was in the range of a few ten MHz. Because none of the
lasers were locked, the detuning was drifting and had to be readjusted several
times. To have a stable beatnote signal on the scope the polarization of the

Figure 5.8: The optical setup to detect the beatnote signal. The two beams
were overlaped by a NPBS. The �/2-plates and PBS are used to obtain the same
intensities in both beams.

light in the polarization-maintaining fibers has to be set correctly otherwise the
intensity behind the beam splitter fluctuates. For this purpose, the output power
after the PBS can be observed while perturbing the fiber by (say) heating it up
with your hands. The waveplate at the fiber in-coupling has to be rotated until
ideally no power fluctuations can be seen due to this perturbation. The raw data
signal observed on the scope is shown in Fig. 5.9. The beatnote is oscillating
with a frequency of the detuning and contains information of both the Toptica as
well as my home-built laser. By calculating the autocorrelation function of the
signal and taking the Fourier transform we get the power spectral density of the
beatnote of both lasers. From Eqn. (5.16) we see that the phase fluctuations will
add up in the PSD. So if we read the FWHM of the PSD we will have the sum
of the linewidths of both lasers. The advantage of this technique is now that we
do not have to assume a certain shape of the linewidth as we did in Ch. 5.2.1.
As discussed above the linewidth is a property that has to be defined for an
interval of time. For measurement times T = 50 µs and 100 µs the power spectral
density centered around the peak position is plotted in Fig 5.10a on a logarithmic
scale. As you can see the green line which corresponds to the shorter measurement
time is more narrowly peaked than the blue line. This confirms our assumption
of the time-dependent linewidth. Obviously the linewidth gets broader if the
measurement time is longer because of more fluctuation of the phase. For even
longer times we might also expect broadening e↵ects due to drifts of the laser
because they are not locked. Figure 5.10b shows again the beatnote signal for
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Figure 5.9: The beatnote signal observed on the scope. The sampling rate is
4 GHz.

T = 100 µs but now it is zoomed into the frequency axis to read out the FWHM.
Because we do not assume a model of the linewidth, we simply determine the
width of the power spectral density where the maximum decreased by a factor of
two. Be aware that the plots have a logarithmic scale on the power axis and thus
the factor between the peak maximum and noise is about 10 000. By reading
out the FWHM on the plot we get �⌫ = (127.8± 14.4) kHz for a measurement
time of T = 100 µs. If we gain assume the spectral width of the reference laser to
be much narrower, then �⌫ corresponds to the laser I built. The linewidth �⌫

is an average over the results of ten single measurements with T = 100 µs. The
error is on one hand due to reading out the FWHM and on the other hand due
to the sampling rate of the scope. This sampling rate is 4 GHz and therefore the
maximum resolved frequency of the PSD is 2 GHz that is given by the discrete
Fourier transform. This range of 2 GHz is itself divided into 4 GHz·100 µs = 4·105
data points distanced at 2 GHz · (4 · 105)�1 = 5 kHz which is then resolution
bandwidth for 100 µs. This finite resolution also did not allow me to measure
the linewidth reasonable for shorter times to then compare it to the Toptica laser
from which we know the linewidth for T = 5 µs. The result of the beatnote
measurement shows a linewidth that is half the linewidth we found by convolving
with the cavity’s resonances. This can be explained by the di↵erent measurement
times of T = 200 µs for the cavity method and T = 100 µs for the heterodyne
technique.
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(a) The green line corresponds to a measurement time of T = 50 µs
and the blue line to T = 100 µs. The graphs are centered around

their peak position.
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(b) The PSD for a measurement time of T = 100 µs. The scale of the
frequency axis is smaller than in Fig. 5.10a.

Figure 5.10: The power spectral density of the beatnote signal for di↵erent mea-
surement times and magnification of the frequency axis. The data evaluation
was done with the help of the Python SciPy library that includes the function
“signal.periodogram” which calculates the PSD from the raw data.
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Chapter 6

Conclusion

I would like to conclude on the results and performance of my laser and bring
forward some ideas for future improvements.
The laser in Littrow configuration I built convinces because of its large mode-
hop-free tuning range of > 15 GHz and a narrow linewidth in the 100 kHz range.
This helps us to lock it to a reference cavity or a spectroscopy cell to improve
its performance. Also the long-term stable temperature control as well as the
low-noise mechanical design [1] leads to a simple practical application in the
experiment because the center linewidth observed on the wavemeter was almost
not drifting over a long time so that once the grating arm was in its final position,
it did not have to be realigned within at least four weeks.
In the last chapter I presented two methods to characterize the linewidth of
the laser. Both results state a linewidth in the 100 kHz range where the cavity
measurement gives a slightly broader spectral width. Reasons for this discrepancy
were discussed. To verify the linewidth in the future, I recommend to use a
reference cavity with a higher finesse. For the beatnote method the lasers should
also be locked to minimize errors due to drifts of the lasers. In general, the
second heterodyne method is the better technique because it represents the more
realistic picture of the laser’s linewidth and no model of the spectral distribution
has to be assumed.
Since our group has now built two Littrow lasers of this type, problems and their
solutions were investigated such that the setup of the same design should be
straightforward. If a more narrow linewidth is desired, it could be considered to
use not the 2 cm cavity length design but the one with 10 cm length for which a
decrease of the linewidth by a factor of more than 20 is expected for 689 nm [1].
The output power I could reach is ⇡ 22.5 mW which is in accordance with the
datasheet of the laser diode. If more output power is required, a di↵erent laser
diode for the 689 nm could be chosen next time. However, there are no laser
diodes for 689 nm that have such a high quality anti-reflective coating than the
one we use, which supports a large mode-hop-free tuning range and stable running
conditions.
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Appendix

A Calculations for Chapter 2.5

First, the Fourier transform of the single groove transmission function of the
grating.:

F [⌦groove(⇠)] =

Z +1

�1

Z +1

�1
⌦groove(⇠) exp[�i((k

x

� k

x,0)⇠ + (k
y

� k

y,0)⌘)] d⇠d⌘

= 2⇡�(k
y

� k

y,0)

Z +b/2

�b/2

exp[�i(k
x

� k

x,0)⇠]d⇠

= 2⇡�(k
y

� k

y,0)
1

�i(k
x

� k

x,0)

n

exp [�i(k
x

� k

x,0)b/2]� exp [+i(k
x

� k

x,0)] b/2)
o

= 2⇡�(k
y

� k

y,0)
2

k

x

� k

x,0

sin [(k
x

� k

x,0)b/2] .

We use Eqn. (2.21), take the absolute value squared and ignore the �-function
in the y-direction to obtain:
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We normalize the intensity by the value at the coordinate origin. With x :=
sin ✓ � sin ✓0, we find
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2⇥l’Hôpital’s rule

_ b

2

) Igrooves(x)

Igrooves(0)
=

"

�

⇡bx

sin

✓

⇡bx

�

◆

#2

= sinc2
⇣

⇡bx

�

⌘

.

To find the intensity distribution of an grating with infinitely small grooves,
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we use the Fourier transform of a �-comb with N peaks in distance a:
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The intensity is proportional to the absolute value squared, which is why the
exponential function evaluates to unity. We get
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Again we normalize the intensity to the value at the origin Icomb(x = 0) and
obtain
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B Protection Circuit

The protection circuit was designed by Nejc Janša at MPQ. The first page Fig. B.1
shows the current supply, the DC modulation part, the relay for shunting the
laser diode, the unimplemented AC modulation part as well as the connection
to the thermistor and Peltier elements. On the second page in Fig. B.2 you can
see the amplifier for the photodiode. This amplifier requires a power supply of
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±12 V. Since the protection board is designed to be supplied by ±15 V, there is
an additional voltage regulator. The Schottky diodes for protection from wrong
input voltage are also shown.

Figure B.1: The protection circuit page 1/2.
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Figure B.2: The protection circuit page 2/2
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C Magnification Factor of an Anamorphic Prism
Pair

The angles of di↵raction are connected by sine functions. In addition, the mag-
nification M of a beam on one surface also depends on cosine functions. For this
reason, the complete form of M gets complex. Nevertheless, I put my results
here to save the reader from calculating this hideous equation. The angles are
chosen as shown in Fig. 4.2b. Here, n describes the refractive index of the glass
and � is the angle between the optical axis and the incoming beam.
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(.2)

The angle � of the outgoing beam in relation to the optical axis is of impor-
tance because it is desired to have a minimal deviation from the initial beam
path. Then, � is given by

�(↵1,↵2,↵, �, n) = �↵� ↵2
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(.3)
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