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Abstract

In this thesis, we report on a system for a dynamically shaped optical dipole trap and
optical transport. We were able to generate an optical dipole trap where shape and
amplitude can be individually controlled. The beam size is tuned by using focus-tunable
lenses as an adjustable telescope. Moreover, the aspect ratio of the beam is shaped using
a frequency modulated acousto-optic deflector. This deflector is scanning the beam along
one dimension to generate a time-averaged dipole potential. As a result, we achieved a
vertical waist of 23µm and a horizontal waist of 541µm yielding an aspect ratio of 23.5.
Besides, the RF power of the deflector is modulated to counteract frequency-dependent
efficiency losses. This modulation also allows for different amplitudes of the dipole trap,
enabling a variety of evaporative cooling schemes. Furthermore, the system can optically
transport atoms using the adjustable telescope in combination with an additional diverging
tunable lens. After reshaping the beam to a waist of 148µm, we reproduced the same
waist over a distance of 95 cm.
In conclusion, this system offers a highly-controllable way of generating optical dipole
traps of varying size and power. It also enables the optical transport of strontium atoms
into our second vacuum chamber.
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1 Introduction

Not even the best classical computers today can simulate the most complex quantum
many-body problems. The numerical power needed to keep track of all degrees of freedom
in such systems scales exponentially with their size. For instance, describing a system of
N spin-1/2 particles requires 2N numbers. In this example, taking only N = 70 particles
would demand 5×109 terabytes of data to represent the full state of the system, assuming
single precision. For comparison, this amount of storage is about 3 times larger than the
projected global IP traffic in 2018 [1].

In general, solving analytical models for many-body problems is difficult and good approx-
imations are rarely available [2]. However, these models are at the heart of many fields
such as high-energy physics, condensed matter physics, or quantum chemistry. A famous
example is the Hubbard model, the simplest model of interacting particles in a lattice – a
situation naturally found in solids [3]. A breakthrough was achieved, when, for the first
time, the so-called Bose-Hubbard model for bosonic particles could be experimentally
realized, i.e., simulated, with an atomic gas in an optical lattice [4]. This experiment
entered the regime of strong atom-atom interaction in an atomic gas, complementing
the very successful theory of weakly interacting atomic gases [5]. The authors used
optical lattices, generated by interfering several laser beams, which can trap atoms by
taking advantage of the latter’s induced dipole moment [6]. This ability allows them to
model highly-controllable, “artificial” crystals of light. The model’s fermionic counterpart,
the Fermi-Hubbard model [7], is strongly connected to a another very prominent phe-
nomenon: high-Tc superconductivity [8–10]. High-Tc materials conduct current without
losses already above liquid nitrogen temperatures of 77 K. Fully understanding them
might give rise to the development of room temperature superconductors, which would
greatly advance today’s technology, reaching from medicine to industry [3]. However, a
complete theory of high-Tc superconductivity remains, to date, one of the major open
questions in quantum many-body physics.

Studying quantum many-body systems also greatly benefited from a second breakthrough
– the realization of quantum gas microscopes. Quantum gas microscopes combine optical
lattices with high resolution fluorescence detection, and were first demonstrated for alkali
metals like rubidium [11, 12]. This new tool allowed for manipulation and precision
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read-out of quantum systems at the single-atom level, providing,e.g., access to unique
correlations otherwise difficult to measure [13].

From today’s perspective, following the route of quantum simulation presumably offers
the only way to fully understand quantum many-body systems [14]. In our experiment,
we also want to perform quantum simulation, but with strontium, an alkaline earth
metal [15]. Its rich electronic structure, with singlet and triplet states connected by
narrow intercombination lines, famously established strontium as an ideal candidate for
atomic clocks and high precision measurements like atom interferometers [16].

In our experimental sequence, we take advantage of strontium’s unique electronic proper-
ties, with the aim of obtaining degenerate strontium quantum gases. We start by laser
cooling strontium atoms inside our first vacuum chamber in a “blue”, 461 nm magneto-
optical trap (MOT) and a subsequent “red”, 689 nm MOT [17]. The red MOT is special in
the sense that, due to its narrow transition linewidth, it allows us to reach µK temperatures
on very fast timescales of ∼ 100 ms. Moreover, the trapped atomic gas in the red MOT has
a very particular, elliptical shape with aspect ratios of up to 1:20 [18], strongly dependent
on the bosonic or fermionic nature of the used strontium isotope. All these properties
determine our subsequent optical dipole trap (ODT). It too should be able to form a
highly elliptical shape to assure good phase-space overlap between the red MOT and the
ODT, whilst achieving high vertical trapping frequencies [17] – otherwise the atoms would
escape due to gravity. High vertical trapping frequencies are especially important for
evaporative cooling [17], crucial for achieving quantum degeneracy [19]. Finally, we want
to load the atoms into our optical lattices, generated inside our second vacuum chamber.
However, our first and second vacuum chambers are physically separated by at least
50 cm to allow for better optical access to the microscope. This setup thus necessitates
an optical transport scheme connecting both chambers.

In this Master’s thesis, we report on my work on the last steps in this experimental
sequence: the engineering of a setup which creates the optical dipole trap, including a
controllable shape and amplitude, as well as performing the optical transport. This setup
is shown in a simplified way in Fig. 1.1.

This thesis is structured as a guide through the preceding steps of the experiment and
the presented setup. In Chapter 2, we start by exploring strontium, review the basics of
laser cooling of neutral atoms and apply these to our experimental sequence for strontium.
Specifically, we take a look at optical trapping of neutral atoms and the important concept
of time-averaged potentials, which allows us to “paint” arbitrary potential landscapes for
the atoms. In Chapter 3, we investigate the 1070 nm dipole laser used for this setup by

8



Acousto-
optic
deflector

Horizontal 
optical 
dipole trap

Telescope
tunable lenses

Vertical optical 
dipole trap

Transport 
tunable lens

Vertical optical 
dipole trap

Dipole
trap laser

(Chapter 3)

Scanning
system

(Chapter 4)

Dynamical
beam

shaping

(Chapter 5)

Optical
transport

(Chapter 7)

Crossed dipole trap

(Chapter 6)

Figure 1.1 | Schematic overview of the transport laser setup with shape and amplitude control
Each part of the setup (separated by the dashed lines) is described in the corresponding Chapter.

measuring its emission spectrum and relative intensity noise. In Chapter 4, we present
the ideas behind the scanning system used to deflect our dipole laser beam and generate
the aforementioned time-averaged potential. In Chapter 5, we show how to further tailor
the dipole laser to our needs by dynamically adjusting the beam size. For that purpose,
we take advantage of an adjustable telescope that uses focus-tunable lenses. In Chapter 6,
we deduce the requirements for the shape and amplitude control of our optical dipole
trap. Additionally, we simulate its trap potential and benchmark its performance in a
test setup. In Chapter 7, we describe how to realize the optical transport with another
type of focus-tunable lens. As before, we examine its performance in theory and in a test
setup. Finally in Chapter 8, we summarize the most important results and take a look at
future prospects.
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2 Trapping and cooling of
strontium

This Chapter lays the theoretical foundation for the trapping and cooling of strontium
atoms in our experiment.

In Sec. 2.1, we explore the atomic and electronic properties of strontium and its isotopes.
In Sec. 2.2, we give a brief review of the semiclassical interaction of neutral atoms with
light. Based on this discussion, in Sec. 2.3, we show how to cool strontium atoms with
light. Moreover, we explain how to confine them using an additional magnetic field,
which results in a magneto-optical trap (MOT). Finally, we examine in Sec. 2.4 how to
trap strontium atoms only using light, forming an optical dipole trap (ODT). We also
introduce the concept of time-averaged potentials.

2.1 Strontium

In this Section, we give a short overview of the most important properties of strontium,
crucial for understanding our experimental sequence.

Strontium is an alkaline earth metal with atomic number 38 and four naturally occurring
isotopes as shown in Table 2.1.

Table 2.1 | Strontium isotopes and their properties. The
data was taken from Stellmer et al. [19]

Isotope Abundance Nuclear spin I Statistics
84Sr 0.56% 0 Bosonic
86Sr 9.86% 0 Bosonic
87Sr 7.00% 9/2 Fermionic
88Sr 82.58% 0 Bosonic

Depending on the number of fermionic particles like electrons, protons and neutrons in
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2.1. Strontium

an atom, the atom is either fermionic (odd number) or bosonic (even number). As for all
isotopes, there is an equal number Z of electrons and protons. This contribution is thus
always even in every isotope. As a result, only the number of neutrons N determines the
statistics of the strontium isotopes. Since for strontium Z = 38, the parity of the total
number of fermions can be directly inferred from the familiar mass number A = Z +N .
Therefore all strontium isotopes of even mass number are bosonic and all isotopes of
odd mass number are fermionic. Additionally, 87Sr has a non-zero nuclear spin I = 9/2.
Strontium has a rich electronic structure of which only a small part, most relevant for the
experiment, is depicted in Fig. 2.1.

clock transition in 87Sr
1 mHz

3P1   Red MOT
689 nm
7.4 kHz

3P0

1P1

Blue MOT
461 nm
30.5 MHz

1S0

698 nm

3P2   

3S1   
Repump
707 nm
679 nm

Reservoir

1D2   

1 : 50 000
1 : 2

Figure 2.1 | Simplified electronic level structure of strontium. The data
was taken from Boyd [20]. The electronic ground state is the 5s2 1S0 state.
Transitions between singlet and triplet states are dipole forbidden via the
∆S = 0 selection rule. The transition from the ground state to the 5s4p
3P0 state is even doubly forbidden breaking the ∆J = 1 selection rule.
This transition has a finite transition rate only in 87Sr due to hyperfine
state mixing. It is also called a clock transition because of its use in
atomic clocks. The meaning of other special names for certain transitions
is explained in the text.

The two electrons in the outer shell of strontium can form a singlet or triplet state,
depending on their spin orientation. The electronic ground state is the 5s2 1S0 state. In
general, transitions between singlet and triplet states are dipole forbidden via the ∆S = 0

selection rule. The transition from the ground state to the 5s5p 3P0 state is even doubly
forbidden breaking the ∆J = 1 selection rule. Only the fermionic isotope 87Sr is special
in that sense. There, the transition has a finite rate due to hyperfine state mixing [21].
Because of its extraordinarily narrow linewidth, this transition is very useful for atomic
clocks [18]. Therefore, this transition is also called a clock transition. Two transitions
called the “blue” and “red” MOT are used to trap strontium atoms in magneto-optical
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2.2. Atom-light interaction: Semiclassical model for two-level atoms

traps, named after the color of the corresponding wavelengths. The repump transitions
are used to optically pump atoms from the 3P2 and 3P0 states back to the ground state,
which is crucial for the blue MOT.

2.2 Atom-light interaction: Semiclassical model for
two-level atoms

In the last Section, we already mentioned several important transitions in strontium.
These transitions are intimately connected to our experimental sequence and its physical
principles. Before we start explaining these parts, we quickly review the basics of atom-
light interaction. This knowledge is essential for understanding the following Sections.

Let us first consider a neutral two-level atom with ground state ∣1⟩ and excited state
∣2⟩. Both states are separated by an energy h̵ω21, where ω21 is the transition frequency
and h̵ is the reduced Planck constant. The excited state decays with a rate Γ ≡ 1/τ ,
called the natural linewidth, where τ is the lifetime of the state. We let this two-level
atom interact with light, described by a classical electric field E(r, t) = E0e−ik⋅reiωt, where
E0 is the amplitude of the electric field with its direction called the polarization, k is
the wavevector with wavenumber k, ω = 2πf is the angular frequency of the field with
frequency f , and λ = c/f is the wavelength in the medium, here assumed to be vacuum.
The coupling strength between the atom and the electric field is given by the effective
Rabi frequency Ω′ [17]

Ω′ ≡
√

Ω2 +∆2,

Ω ≡ −e∣E0∣
h̵

⟨2∣r∣1⟩ ,
(2.1)

where we defined the on-resonance Rabi frequency Ω with electron charge e, electron
coordinate r, and the detuning ∆ ≡ ω − ω21. We assume here that the electric field is
not spatially dependent over the atom since the optical wavelengths of our transitions
≈ 400 − 700 nm usually exceed the atomic dimensions ≈ 0.25 nm of strontium by far. This
approximation is called the electric dipole approximation. As outlined in many textbooks
(see, e.g., Metcalf and Van der Straten [17]) using the density-matrix formalism, the
excited state population in the steady state is given by the diagonal matrix element

ρ22 =
s0/2

1 + s0 + (2∆/Γ)2 , (2.2)
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2.3. Zeeman slower and magneto-optical traps

where we defined the on-resonance saturation parameter s0 ≡ 2∣Ω∣2/Γ2 = I/Is, with the
field intensity I(r, t) = 1/2ε0c∣E(r, t)∣2, and the saturation intensity Is ≡ πhc/(3λ3τ). The
atom scatters photons with a scattering rate [17]

Γsc = Γρ22, (2.3)

which is directly proportional to the natural linewidth Γ. This absorption and subsequent
emission, i.e., scattering of photons with momentum h̵k, gives averaged over time, a force,
called the radiation pressure force [17]

Fsc = h̵kΓsc = h̵k
Γ

2

s0
1 + s0 + (2∆/Γ)2 , (2.4)

where we assumed that the momentum transfer by the photons is always aligned with
the direction of light propagation k̂, and the momentum change caused by subsequent
spontaneous emission averages out. It is maximum on resonance, i.e., for a vanishing
detuning ∆ = 0, and increases with light intensity. This force can thus be used to perform
laser cooling of atoms for ∆ < 0.

2.3 Zeeman slower and magneto-optical traps

After we reviewed the atomic properties of strontium and the basics of atom-light
interaction, we go through the experimental sequence step-by-step and describe the
physical principles behind it. We start in Sec. 2.3.1 with the oven and the Zeeman slower.
In Sec. 2.3.2, we continue with an explanation of magneto-optical traps (MOT) in general
and our “blue” MOT in detail. We then show in Sec. 2.3.3 the subsequent “red” MOT and
how its narrow linewidth transition makes it different from the blue MOT. We also show
the important differences between bosonic and fermionic isotopes that become especially
apparent during this step. Finally, in Sec. 2.4, we explain the principles of optical dipole
traps and take a look at the principle of time-averaged potentials.

2.3.1 Oven and Zeeman slower

In our experiment, we start with strontium atoms heated by the atomic oven (Createc
LT-DFC-40-10-WK-2B-SHE ) up to ≈ 600 ○C Subsequently, they leave the oven in the x
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2.3. Zeeman slower and magneto-optical traps

direction. Then, they are slowed down by a Zeeman slower as shown in Fig. 2.2.

Oven

Solenoid

Laser

Atoms

Figure 2.2 | Principle of a Zeeman slower. Atoms (yellow, highlighted in gray circles) with
transition frequency ω21 leave an atomic oven in the x direction with a velocity v = ∣v∣. A
counterpropagating laser beam of frequency ω (red arrow) and a non-uniform axial magnetic field
B(x) (green line in the lower graph) produced by a solenoid-like coil (dark gray) are tuned such
that the atoms are always in resonance with the light. This condition makes the atoms constantly
absorb photons incident from the −x direction and subsequently emit them spontaneously into all
directions. Looking at the classical phase-space trajectories (blue lines), one finds that below a
critical velocity vc, all atoms are slowed down to a smaller final velocity. (adapted from Inguscio
and Fallani [22])

This procedure works as follows: in general, we want to slow these atoms down using a
counterpropagating laser on resonance and thereby taking advantage of the maximum
radiation pressure force defined in Eq. (2.4). However, the strontium atoms follow a
modified Maxwell-Boltzmann distribution [23] and leave the oven with a mean velocity of
v = ∣v∣ ≈ 665 m/s. Thus, to guarantee resonance, we have to make sure that the Doppler
shifted frequency ω(1 + v/c) [22] seen by the atoms equals the transition frequency ω21.
However, once decelerated, the atoms will immediately move out of resonance with the
laser again due to their altered Doppler shift. To constantly exert maximum force on
them, we can use a position-dependent magnetic field B(x) provided by a solenoid-like
coil that Zeeman shifts the atomic energy level. For simplicity, let us take an atom with
J = 0 in the ground state and J ′ = 1 in excited state to have, where J is the angular
momentum quantum number. Then, the excited state will be shifted by an amount
∆E = µBgJ ′mJ ′B(x). This Zeeman shift is tuned to always equal the Doppler shift
h̵ωv/c, where µB = eh̵/(2me) is the Bohr magneton, J is the angular momentum quantum
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2.3. Zeeman slower and magneto-optical traps

number, gJ is the Landé factor, and mJ is the angular momentum component along
the x direction [22]. For this step in our experiment, we use a broad transition with
Γ = 2π ×30.5 MHz, called the blue MOT transition (see Fig. 2.1). The angular momentum
quantum numbers are J = 0 for the ground state 1S0 and J = 1 for the excited state 1P1.
In conclusion, the Zeeman slower decelerates the atoms down to 30 m/s, sufficient to be
captured in the blue MOT.

2.3.2 Blue MOT

Before we take a look at the blue and red MOT, we will first explain the principle of
optical molasses/Doppler cooling, see Fig. 2.3a.

(a)
Laboratory frame

Atomic frame

Laser
Atom

(b)

Figure 2.3 | Principle of 1D Doppler cooling. (a) In the laboratory frame, an atom (gray circle)
moves with velocity v = ∣v∣ in the x direction and faces a copropagating and counterpropagating
beam (red arrow) with frequency ω < ω21. In the atomic frame, the atoms experiences the frequency
of the counterpropagating beam as upshifted by ωv/c and vice versa for the copropagating beam.
The atom will thus predominantly absorb photons from the upshifted −x direction with momentum
h̵k and re-emit them spontaneously into all directions which leads to cooling in the −x direction.
This process takes place analogously for a movement in the other direction. (b) Magnitude of the
damping force F defined in Eq. (2.5), experienced by the atom moving with velocity v = ∣v∣. For
small velocities (red filled area), we can approximate this force as linear damping force. (adapted
from Inguscio and Fallani [22])

Instead of one, we use two counterpropagating beams of frequency ω aligned with
the velocity vector v of the atoms. The atom will experience an upshifted frequency
ω(1 + v/c) of the counterpropagating beam and a downshifted frequency ω(1 − v/c) of
the copropagating beam. For ω < ω21, the counterpropagating beam will be closer to
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2.3. Zeeman slower and magneto-optical traps

resonance and thus exert a larger average force (see Eq. (2.4)). In conclusion, the atoms
experience a cooling force with shifted detuning compared to Eq. (2.4) [17]

F = h̵kΓ
s0
2
[ 1

1 + s0 + (2(∆ − k ⋅ v)/Γ)2 −
1

1 + s0 + (2(∆ + k ⋅ v)/Γ)2 ] ≈ −βv, (2.5)

which is shown qualitatively in Fig. 2.3b and can cool atoms in a velocity interval limited
by the capture velocity vcap = ∆/k [17]. For small velocities we can identify this cooling
force simply as a frictional force with friction coefficient β(∆) that is positive for “red”
detunings ∆ < 0. The minimum temperature attainable with this technique is defined by
two fundamental limits, namely

• the Doppler temperature [17]

TDoppler =
h̵Γ

2kB
, (2.6)

where kB is the Boltzmann constant. It is obtained for optimal detuning ∆ = −Γ/2
and related to the equilibrium between cooling and heating rates, and

• the recoil temperature [17]

Trecoil ≡
h̵2k2

2kBm
,

ωr ≡
h̵k2

2m
,

(2.7)

associated to the recoil of a single photon. We also defined a recoil frequency for
convenience.

However, this force is only decelerating. It does not provide any spatial confinement
and as a result the atomic cloud would expand diffusively. To prevent that, one adds
a quadrupole magnetic field B(x) = bx with gradient b, created by a pair of coils in an
anti-Helmholtz configuration, as shown in a simplified way in Fig. 2.4a.

The position-dependent Zeeman shift of the excited state J ′ = 1 is again ∆E = µBgJ ′mJ ′bx,
where b is chosen such that gJ ′b > 0. To understand how this configuration causes spatial
confinement and prevents the cloud from expanding, consider first an atom slowed down
and located at x > 0 as shown in Fig. 2.4a. The Zeeman shift of the magnetic quadrupole
field causes the atom to preferentially absorb a photon from the σ− beam, since this beam
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2.3. Zeeman slower and magneto-optical traps

(a)

Coil

Atom

(b)

Figure 2.4 | Principle of a 1D MOT. (a) An atom located at x > 0 interacts preferably with one of
the two red-detuned counterpropagating laser beams of opposite circular polarizations σ±. Also
present is a magnetic field B generated by two quadrupole coils with counter-circulating current
I. (b) Energy level splitting of an atom having an angular momentum quantum number J = 0
for the ground state and J ′ = 1 for the excited state in the presence of the magnetic field. The
absorption of polarized photons becomes spatially-dependent. (adapted from Inguscio and Fallani
[22])

is closer to resonance (see Fig. 2.4b). In addition to cooling, the force is also directed
towards the trap center and we obtain a magneto-optical trap (MOT). The total force
is [17]

F = h̵kΓ
s0
2
[ 1

1 + s0 + (2(∆ − k ⋅ v − µBgJ ′bx/h̵)/Γ)2 −
1

1 + s0 + (2(∆ + k ⋅ v + µBgJ ′bx/h̵)/Γ)2 ],

≈ −βv − kx.
(2.8)

The MOT works only for velocities below a certain capture velocity. As before, a small
velocity expansion reveals a friction force, this time combined with a restoring force.
Taking the blue MOT transition at 461 nm, we have a standard broad laser cooling line,
where the ratio of the power-broadened linewidth Γ′ = Γ

√
1 + s0 to the single photon

recoil frequency is Γ′/ωr ∼ 3 × 103. The Doppler temperature is TDoppler,461 = 732µK and
the recoil temperature is Trecoil,461 = 518µK for 87Sr. In the experiment, the atoms are
slow enough after the Zeeman slower to be loaded into the blue MOT. We use a magnetic
field gradient of ≈ 50 G/cm along the vertical axis and ≈ 25 G/cm along the other two
axes. The MOT beams have a detuning of 30 MHz, an average beam waist of ≈ 6 mm,
an average power of ≈ 4 mW along the vertical axis and ≈ 5 mW along the other two
axes yielding s ∼ 1. As a result, we are able to cool the atoms down to 1 mK, close to
the Doppler temperature. We note that the blue MOT transition is not fully closed
(see Fig. 2.1). Atoms can decay over the intermediate state 1D2 into the 3P2 state and
accumulate there. This state functions as a reservoir and is only limited by the vacuum
lifetime, which is ≈ 30 − 50 s in our case. The other excited atoms return to the ground
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2.3. Zeeman slower and magneto-optical traps

state.

2.3.3 Red MOT

To continue efficient cooling of the atoms further after the blue MOT, we need to optically
pump the atoms from the reservoir state 3P2 back to the ground state. We accomplish
this by using two repumping lasers. The 707 nm repumping laser is used to optically
pump atoms from the 3P2 →3S1 state. From there they decay back from 3S1 →3P1 and
subsequently from 3P1 →1S0. But atoms in the 3S1 state can also decay from 3S1 →3P0,
which has a very long lifetime ≈ 150 s [24]. Therefore, we need to use a second 679 nm

repumping laser to again pump these atoms back from 3P0 →3S1. Now they have once
more the possibility to decay from 3S1 →3P1 and then from 3P1 →1S0 back to the ground
state.

With all atoms in the ground state, we can start to operate laser cooling on the “red”
MOT intercombination line (see Fig. 2.1). In contrast to the blue MOT, the red MOT
intercombination line is a narrow laser cooling line, where the ratio of the power-broadened
linewidth Γ′ to the single photon recoil frequency is Γ′/ωr ∼ 1 or less.

We first examine the behavior of the red MOT for the bosonic isotopes resembling our
former setting where J = 0 for the ground state and J = 1 for the excited state.

The nature of the cooling strongly depends on the detuning ∆ and the saturation parameter
s. As a result, we can qualitatively distinct two regimes [25] relevant in this setting:

1. ∆ < Γ′: For small detunings and high intensities, the situation is analog to standard
broad line Doppler cooling as shown for the blue MOT. The ratio of maximum
radiative to gravitational force h̵kΓ′/(2mg) is about 5 orders of magnitude [20], so
gravity can be safely ignored. The atoms will accumulate at the position, where
the Zeeman resonance condition is fulfilled. This condition is mainly determined by
the axial and radial magnetic field gradients of the two coils. Thus the atoms are
confined to a resonance region resembling an ellipsoid of aspect ratio ∼ 2 ∶ 1 [24].

2. ∆ > Γ′: For large detunings and low intensities however, the cooling dynamics
are strongly altered. Now the ratio of maximum radiative to gravitational force
h̵kΓ′/(2mg) is usually only on the order of ∼ 16, so gravity plays a role. As a result,
the atoms will accumulate at the position, where the Zeeman resonance condition
including a gravitational energy shift is fulfilled. This modification causes the atoms
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2.3. Zeeman slower and magneto-optical traps

to “sag” to the lower part of the resonance ellipsoid, creating a “pancake”-shaped
MOT (see Fig. 2.5b).

For the fermionic MOT, the situation is more complex because of the non-vanishing
nuclear spin I = 9/2. The excited 3P1 state with J = 1 now experiences splitting into
several hyperfine states F = I ± J with F = 11/2,9/2 and 7/2. Each of the hyperfine
states also has 2F + 1 mF substates. Depending on the substate the atoms can be either
attracted or repelled from the trap center [20]. Briefly speaking, the solution to this
problem is the use of an additional “stirring laser” on the 1S0, F = 9/2 →3P0, F = 9/2
transition. The stirring laser effectively mixes the different mF sublevels. As opposed to
the bosonic case, we do not have only two cooling transitions where ∆mJ = ±1 giving
rise to one resonance ellipsoidal shell. Now, each transition where ∆mF = ±1 has its own
Zeeman resonance ellipsoidal shell. All these shells effectively overlap and merge, creating
a fermionic red MOT shape that resembles the one of a broad cooling transition as shown
in Fig. 2.5a.

(a)

wd = 277 μm

wD = 477 μm
AR = 1.7

87Sr
(b)

wd = 132 μm
wD = 587 μm

AR = 4.4

88Sr

Figure 2.5 | Red MOTs of fermionic and bosonic strontium isotopes. (a) A typical picture of
the red MOT for 87Sr, obtained in our experiment. It is fitted by a 2D Gaussian (red solid lines
mark the 1/e2 intensities) giving waists of wD = 477µm along the long axis and wd = 278µm along
the short axis. The resulting aspect ratio AR ≡ wD/wd is 1.7. The final single-frequency detuning
here is −240 kHz. (b) A typical picture of the red MOT for 88Sr, obtained in our experiment.
It has a waist of wD = 587µm along the long axis and wd = 133µm along the short axis. The
resulting aspect ratio AR ≡ wD/wd is 4.4. Clearly visible is a sagging of the atoms, giving rise to
a “pancake” shape. The final single-frequency detuning here is −150 kHz. For both pictures, the
final magnetic field gradient is 0.65 G/cm.

In the experiment, after the blue MOT stage, we first ramp down the magnetic field
gradient to 1 − 6 G/cm. At this point, the atoms have a temperature on the order of
the Doppler temperature ≈ 1 mK, which is far bigger than the corresponding Doppler
temperature TDoppler,689 = 178 nK or the recoil temperature Trecoil,689 = 232 nK of the
red MOT. Thus, their velocity is also larger than the capture velocity of the red MOT.
Therefore, to capture the atoms, we use a broadband red MOT, where we modulate the
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2.4. Optical dipole traps

frequency of the light with a sawtooth waveform of period 40µs in a detuning range
of −8 MHz to ±100 kHz. This modulation allows us to cover a large fraction of the
velocity distribution of the atoms. This technique is a modified version of laser cooling
by sawtooth-wave adiabatic passage [26]. We also ramp the beam powers for every axis
from 4 mW → 1 mW. We use a beam waist of 3 mm, giving s≫ 1. We end up with 107

atoms of 87Sr or 108 atoms of 88Sr at a temperature of 10µK. The last step is a single
frequency red MOT stage, where we ramp the detuning from −350 kHz → −150 kHz in
10 ms for 87Sr and 50 ms for 88Sr. During this ramp, we keep the magnetic field gradient
at 1 G/cm and lower the beam powers to a few µW, equivalent to s ∼ 1. The atoms are
now at a final temperature of ≈ 1µK without significant losses in atom number.

After the red MOT, we will load the atoms into an optical dipole trap that is explained
in the next Section.

2.4 Optical dipole traps

Besides the diagonal elements in the density matrix for the two-level atom interacting
with light (see Sec. 2.2), we also associate physical meaning with the off-diagonal elements.
These off-diagonal elements are called coherences and describe the strength of the induced
dipole moment d(r, t) [17]. For large detunings ∆ ≫ Γ′ with very small population in the
excited state, ρ22 ≪ 1, we find that this induced dipole moment is linearly proportional
to the applied field d(r, t) = α(ω)E(r, t), where the proportionality factor α(ω) is called
the complex polarizability [6]:

α(ω) = 6πε0c
3 Γ/ω21

ω2
21 − ω2 − i(ω3/ω2

21)Γ
. (2.9)

We can decompose this interaction into two parts:

1. The part of d in phase with E is dispersive and gives rise to a conservative dipole
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potential resulting in the optical dipole force Fdip = −∇Vdip(r) [6]:

Vdip(r) = −
1

2
⟨d ⋅E⟩ = − 1

2ε0c
Re(α)I(r), (2.10a)

= −3πc2

2ω3
21

( Γ

ω21 − ω
+ Γ

ω21 + ω
)I(r), (2.10b)

≈ 3πc2

2ω3
21

Γ

∆
I(r), (2.10c)

where ⟨⟩ denotes the time average over rapid oscillating terms. In the last line, we
made use of the rotating-wave approximation (see, e.g., [27]). The factor 1/2 takes
into account the induced nature of the dipole moment. For red detuning ∆ < 0

relevant here, the optical dipole potential is negative Vdip < 0 and therefore attractive.
Atoms are trapped at potential minima, i.e., points of maximum intensity. In the
other case of blue detuning ∆ > 0, the situation is reversed.

2. The part of d out-of-phase with E is dissipative and gives rise to absorption of energy
from the driving field E by the oscillator. It is given here only for completeness and
is the already known scattering rate [6]:

Γsc =
1

h̵ε0c
Im(α)I(r), (2.11a)

= 3πc2

2h̵ω3
21

( ω

ω21
)
3

( Γ

ω21 − ω
+ Γ

ω21 + ω
)
2

I(r), (2.11b)

≈ 3πc2

2h̵ω3
21

( Γ

∆
)
2

I(r), (2.11c)

where we again used the rotating-wave approximation.

For lasers not too far detuned, we can obtain a simple and insightful relation for optical
dipole traps. Looking at Eq. (2.10c) and Eq. (2.11c), we deduce [6]

h̵Γsc =
Γ

∆
Vdip. (2.12)

Here, the dipole potential Vdip scales with I/∆ and the scattering rate scales with I/∆2.
As a result, we should thus use large detunings and high intensities to keep the scattering
rate as low as possible for a given trap depth.

We will conclude this Chapter by giving an example for an optical dipole trap. Consider,
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e.g., a circular Gaussian beam with intensity profile [28]

I(r, z) = 2P

πw2(z) exp(− 2r2

w2(z)), (2.13)

where P denotes the total power of the beam, w(z) = w0

√
1 + z/zR is the 1/e2 beam

radius with Rayleigh range zR = πw2
0/λ, minimal waist w0 and wavelength λ, r is the

radial coordinate, and z the axial coordinate. We take strontium as our two-level system
with ground state 1S0 and excited state 1P1, which is the dominant, already known blue
MOT transition. Let us also assume a 1070 nm laser that is far detuned from the 461 nm

resonance. Inserting these parameters into Eq. (2.10a), assuming a red detuned beam
∆ < 0, and adding the gravitational potential mgy, gives us the dipole potential shown in
Fig. 2.6a.
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Figure 2.6 | Dipole potential for a circular Gaussian beam in radial and axial direction. The
parameters used are P = 10 W and w(z) = w0 = 70µm. (a) The dipole potential (green solid line)
along the radial, vertical direction y provides strong confinement. Gravity induces a tilt in the
potential along the vertical direction and reduces the effective potential depth (green filled area).
(b) The dipole potential provides weak confinement in the axial direction. Note the comparable
trap depths but the different units of the abscissas.

As we can see, a circular Gaussian beam provides weak confinement in the axial direction
but strong confinement in the radial direction. Additionally, gravity induces a tilt in
the potential specifically along the vertical direction and further reduces the effective
potential depth.

However, we are not limited to circular traps. We can also imagine other geometries like
elliptical traps. One way to generate these is by using cylindrical lenses. In contrast to this
static method, we use a “dynamic” one. By “wiggling” a laser beam “fast enough” with an
acousto-optic deflector, the beam will appear elliptical for the atoms. This so-generated
potential is called a time-averaged potential.
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2.4. Optical dipole traps

In the experiment, we do use a high-power 1070 nm laser that is detuned from the
dominant 461 nm blue MOT transition in strontium. This dipole laser is described in the
next Chapter.
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3 Dipole trap laser

In this Chapter, we describe the dipole trap laser used in our setup.

First, in Sec. 3.1, we discuss the laser’s optical spectrum and determine its coherence
length lc. In Sec. 3.2, we investigate the laser’s relative intensity noise spectrum and
explain its characteristic peaks.

3.1 Optical spectrum and coherence length

It is crucial to have precise knowledge of the optical spectrum of the 1070 nm laser that
we use, namely the central wavelength λc and the full width half maximum (FWHM)
linewidth ∆λ. To determine if unavoidable back reflections from viewports can cause
standing waves via interference with incoming light, we also need to know the coherence
length lc of the laser.

The laser used in the experiment is a 100 W single-mode ytterbium fiber laser (IPG
Photonics, YLR-100-LP-WC ), its output beam waist is 1.67 mm as measured with a knife
edge.

For measuring the laser’s optical spectrum, we connected the laser to an optical spectrum
analyzer (OSA, Ando, AQ6315E, 10 averages, resolution of 0.05 nm) with a polarization
maintaining, single mode 1064 nm fiber (Thorlabs, P3-1064PM-FC-5 ). We used a fixed
input power of ≈ 1 mW at the OSA, measured with the powermeter (Thorlabs, PM100D
and sensor S121C ). The measured optical power spectral density (OPD) as a function of
wavelength λ is shown in Fig. 3.1a for different setpoints of the laser’s maximum output
power Pout. The thereof derived FWHM linewidth is shown in Fig. 3.1b.

From Fig. 3.1a, we can determine the central wavelength λc of the laser in air to be
1070.3(1)nm. This is in good agreement with the value of 1070.2 nm given in the
datasheet [29]. The linewidth ∆λ broadens with increasing output power and shows
linear behavior between 20 − 80 W. Below 20 W and above 80 W a saturation effect can
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Figure 3.1 | Spectrum and linewidth ∆λ of the dipole laser for different output powers Pout. (a)
Three exemplary spectra of the laser are shown for different output powers Pout of 3 W (light
blue), 57 W (mid blue) and 105 W (dark blue). The horizontal lines indicate the respective
linewidths. The central wavelength λc is 1070.3(1)nm (dashed line). The central peak decreases
and broadens for higher output power. (b) The full width at half-maximum (FWHM) linewidth
∆λ as a function of output power is shown. The linewidth broadens with increasing output
power and shows linear behavior (dashed line) between 20 − 80 W. Below 20 W and above 80 W
a saturation effect can be observed. The error bars account for the increased noise at higher
running power.
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3.2. Relative intensity noise spectrum

be observed. The origin of this broadening mechanism is explained in the subsequent
Section.

From the central wavelength and the linewidth, we can calculate the coherence length of
a presumed Lorentzian spectrum as [28]

lc = cτc =
c

π∆f
= λ2c
π∆λ

, (3.1)

where we defined the coherence time τc and the linewidth in the frequency domain ∆f .
We also used ∣∆λ/∆f ∣ ∼ c/f2 for small wavelength intervals. We note that the coherence
length is, despite its dimension, a measure for the temporal and not spatial coherence, as
can be seen in Eq. (3.1). Mathematically speaking, the coherence length is the propagation
length after which the magnitude of the temporal coherence function has dropped to
1/e. Intuitively, the coherence length of a laser specifies over what length scales we can
expect coherent behavior. Taking interferometers as a typical example, the coherence
length should exceed at least the optical path length difference of the light. Otherwise,
no interference fringes will be visible.

The calculated coherence length lc for our laser as a function of linewidth ∆λ is shown in
Fig. 3.2.

With increasing linewidth, corresponding to increasing output power (see Fig. 3.1b), the
coherence length becomes shorter and reaches a minimum at about 0.12 mm. Comparing
the maximum coherence length of 1.5 mm to the distance between the front and back
viewport of ≈ 200 mm, we obtain a difference of two orders of magnitude. Thus, it is
reasonable to assume that no standing waves caused by the interference between the
incoming and backreflected laser light will occur.

3.2 Relative intensity noise spectrum

A good knowledge about the relative intensity noise (RIN) spectrum of the laser light is
important to identify fluctuations around the average power of a laser.

For the RIN measurement, part of the laser light was coupled to a polarization-maintaining,
single-mode 1064 nm fiber (Thorlabs, P3-1064PM-FC-5 ). After passing through a λ/2
waveplate (Newport, 10RP02-34 ), a Brewster plate (ATF, TFPI-1064-PW-1025-UV ) and
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Figure 3.2 | Coherence length lc as a function of linewidth ∆λ. With increasing linewidth
corresponding to increasing output power (see Fig. 3.1b), the coherence length becomes shorter
and reaches a minimum at 0.12 mm. The errors are due to the finite precision in the linewidth
measurement.

a beam sampler (Thorlabs, BSF10-C ), the beam was aligned onto an InGaAs photodiode
for 900 − 1700 nm (Thorlabs, FGA10 ) including a bandpass filter for 1070 nm (Thorlabs,
FB1070-10 ) before the photodiode. The laser output power setpoint was tuned between
20-100% of its maximum power and the outcoupled power was adjusted such that at
all times the same power of 0.3 mW was present at the photodiode. The output of the
photodiode board [30] was then measured with multiple devices to cover the largest
frequency range with the best precision, as summarized in Table 3.1. The complete RIN
spectrum is shown in Fig. 3.3.

Table 3.1 | Devices and their settings for the measured intensity noise in different frequency
spans. The spectra were combined using the unit conversions explained in App.B on page 89

Frequency span Device Relevant settings

DC/0 Hz Fluke 87V True RMS Multimeter Volt
0 − 100 kHz SR760 FFT Spectrum Analyzer RBW = 250 Hz, units =

dBVrms, number of averages =
1000, average type = RMS, av-
erage mode = linear

100 − 500 kHz Anritsu MS2721B RBW = 10 Hz, detection =
RMS

500 kHz − 50 MHz RBW = 100 Hz,
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Figure 3.3 | Relative intensity noise versus frequency f . The photodiode (black) without light
and the reference thermal light source (gray) both consist of broad peaks at low frequencies up to
several 100 Hz and small electronic peaks. Both spectra are well below the two laser spectra at
8.75 W (mid blue) and 104 W (dark blue) output power above ≈ 1 kHz. In the 10−500 kHz regime,
both laser spectra exhibit a series of relaxation oscillation peaks with comparable linewidth and
position, but different height. Starting at 6.5 MHz, both laser spectra also show evenly spaced
peaks (inset), which broaden for 104 W (see text for details). The total integrated normalized
noise P /Pdc is 1.9 ⋅ 10−9 for 8.75 W and 2.8 ⋅ 10−8 for 104 W.

We take the photodiode itself without light, normalized similar to the other spectra, and a
thermal light source (Euromex, LE.5211 ) as reference for the laser spectra. Both spectra
show a broad peak at low frequencies up to several 100 Hz. Small electronic peaks at
100 kHz and above 2 MHz are visible in the photodiode spectrum. The thermal light
source spectrum has additional electronic peaks slightly below 10 kHz and is well below
the two laser spectra at 8.75 W and 104 W output power above ≈ 1 kHz. We conclude
that all other features in the two laser spectra stem from the laser itself.

The peaks from 10 − 500 kHz in both spectra are very likely due to relaxation oscillations,
which are typical for solid-state lasers [31]. These oscillations occur when the laser is
perturbed by a small fluctuation in gain, cavity loss or alignment. The fluctuations can
be caused, e.g., by mechanical vibrations of the cavity, power supply noise or noise from
the laser diode pumping the gain fiber of the fiber laser.
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Starting at 6.5 MHz, both laser spectra also show evenly spaced beat note peaks. These
beat notes can be understood by looking at a schematic picture of the oscillations in a
laser, shown in Fig. 3.4.

Gain coefficient 

Loss coefficient

Longitudinal 
lasing modes

Figure 3.4 | Oscillating longitudinal modes in a laser. A laser medium
is defined by its frequency-dependent gain coefficient g(f) (blue solid line)
of linewidth ∆f and central frequency f0. The cavity is characterized by
its cavity loss coefficient αr (red dashed line). The spacing of the cavity’s
longitudinal modes fi with linewidth ∆fi is called the free spectral range
∆fFSR. The gain and loss coefficient restrict the manifold of longitudinal
modes to a subset of lasing modes (orange).

A laser consists, in principle, of

• a medium with gain coefficient g(f) of linewidth ∆f and central frequency f0 and

• a cavity with loss coefficient αr that serves as cavity and defines the laser’s longitu-
dinal modes fi with linewidth ∆fi, separated by the free spectral range

∆fFSR = c0
2n1Lr

, (3.2)

defined by the vacuum speed of light c0, the linear index of refraction of the gain
medium n1 and the cavity length Lr [32].
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3.2. Relative intensity noise spectrum

Not every longitudinal mode defined by the cavity is oscillating in a laser. Only the m
longitudinal modes for which the gain coefficient exceeds the loss coefficient g(f) > αr
can lase. Each of these modes is of the form U(t) =

√
Iej2πft [28]. Every single mode

also interferes with its neighbors. As an example, consider nearest-neighbor interference
between the modes of frequency f1 and f2. The combined field will be of the form
U(t) =

√
I1ei2πf1t +

√
I2ei2πf2t. If we measure the resulting intensity of this field with a

photodiode, we observe I(t) = I1 + I2 + 2
√
I1I2 cos[(2π(f2 − f1)t]. Additionally to the

constant intensity, a difference frequency – so-called beat note – is generated. This
difference frequency of the lasing modes is equal to the free spectral range. Therefore, the
first peak at around 6.5(1)MHz corresponds to the signal of all lasing modes interfering
with their nearest neighbors. Consequently, all peaks at integer multiples i of ∆fFSR

correspond to the signal generated by lasing modes interfering with their ith neighbor
mode. The peak height decreases with i since the number of interfering lasing modes also
decreases.

From Eq. (3.2), we can determine the length Lr = 15.4(2)m of the cavity in the fiber
laser, taking a typical index of refraction n1 = 1.5 for the gain fiber [31].

As can be seen from Fig. 3.3, most of the relaxation oscillation peaks keep their position
and linewidth independent of output power. This highlights their origin outside of the
gain medium. In contrast, the beat note peaks start to broaden for higher output powers.
As an example, we measure and analyze the linewidth of the first beat note peak for
different output powers (see Fig. 3.5a).

According to Lapointe and Piché [33], this linewidth broadening is not related to the
deformation of the fiber Bragg gratings acting as mirrors in the gain fiber. Instead the
broadening is associated to four-wave mixing (FWM) between the lasing longitudinal
modes. For higher output powers, the nonlinear, intensity-dependent contributions to the
index of refraction of the medium n2(I) start to become relevant such that n = n1 +n2(I).
This intensity dependent index of refraction leads to a nonlinear phase shift of the modes.
Consequently, this phase shift broadens the linewidth of these modes [34].

Lapointe and Piché [33] observed a power-law relation between the linewidth and the
output power of the laser with an exponent of ∼ 1, assuming FWM being the major
broadening mechanism. As shown in Fig. 3.5b, the linewidth indeed follows approximately
linear behavior. This indicates that FWM is a good candidate to be the dominant
broadening mechanism in this Ytterbium fiber laser. Since the beat note linewidth
broadening is directly connected to the broadening of every longitudinal mode, the total
linewidth of the laser, ∆λ, will also broaden with increasing output power, as can be seen
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Figure 3.5 | Linewidth broadening of the first beat note peak for different output powers Pout.
(a) The FWHM linewidth (blue colored horizontal lines) of the first beat note peak (see Fig. 3.3)
increases with the output power of the laser. The output power was changed from 8.57 W (light
blue) to 104 W (dark blue) in steps of 10% at the output level of the laser. (b) The beat note
linewidth is shown for different output powers and shows approximately linear behavior (gray
dashed line). Error bars indicate the noise-contingent uncertainty in the determination of the
linewidth from the data.
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3.2. Relative intensity noise spectrum

in Fig. 3.1b and Fig. 3.4.

From Fig. 3.3, we can also determine that the total integrated normalized noise P /Pdc is
1.9 ⋅ 10−9 for 8.75 W and 2.8 ⋅ 10−8 for 104 W.

In conclusion, to determine the optimal running power of the laser, one has to balance
the sharp peaks in the RIN at low power against the order of magnitude higher noise for
high power.

In the next Chapter, we proceed with explaining the scanning system of the transport
laser with shape and amplitude control.
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4 Acousto-optic deflection
and scanning system

After we investigated the characteristics dipole trap laser in the preceding Chapter, we
now describe how to manipulate this laser via acousto-optics such that it generates not a
circular but an elliptical beam.

For this, we first explore the acousto-optic effect in Sec. 4.1, starting with a simplified
wave interaction picture and subsequently study it in a more extensive beam interaction
picture. In Sec. 4.2, we explain, how we operate the acousto-optic devices, that we use in
the setup. In Sec. 4.3, we use the knowledge of the preceding Section to compare the used
acousto-optic devices, namely an acousto-optic modulator (AOM) and an acousto-optic
deflector (AOD). In Sec. 4.4, we finally explain the scanning system for the laser and how
to use it for generating time-averaged potentials.

4.1 Acousto-optic effect

For the subsequent Sections, it is essential to understand the general principles of acousto-
optic interaction, explained in this part.

First, consider an acoustic plane wave created by a piezoelectric transducer, traveling in
the x direction in an optically transparent medium of refractive index n, with wavevector
q, velocity of sound vs, and acoustic frequency F , depicted in Fig. 4.1.

The acoustic wave is equivalent to a sinusoidal strain in the medium. This strain
directly corresponds to a sinusoidal variation of the mediums refractive index n(x, t) =
n − ∆n cos(Ωt − qx), where ∆n is the amplitude of the perturbation, Ω = 2πF is the
angular frequency and q = 2π/Λ is the wavenumber with wavelength Λ = vs/F . The minus
sign shows that positive strain causes a reduction in the refractive index.

Furthermore, consider an optical plane wave entering this medium with wavevector k,
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4.1. Acousto-optic effect

Incident optical wave Diffracted optical wave
1st order

Transmitted optical wave
0th order

Transducer

Medium

Acoustic wave

Figure 4.1 | Interaction of an optical wave with an acoustic wave. (left) An acoustic plane wave
of wavelength Λ and wavevector q (green) generated by a piezoelectric transducer creates a varying
refractive index n ±∆n in an optically transparent medium (blue). The refractive index variation
is approximated as a static step function (green solid line), defining a set of parallel planes. An
optical plane wave with free-space wavelength λ0 and wavevector k, incident at an angle θ is
partially diffracted at every plane (dashed box). Consequently, a transmitted and diffracted
optical wave with wavevectors k and kr, respectively, at the same angle ±θ are generated. (upper
right) The geometric relations relevant for Bragg diffraction of an optical wave represented by
rays (red) at planes of varying refractive index (green) are shown. (lower right) The equivalent
vector relations relevant for Bragg diffraction of an optical wave from an acoustic wave are shown.
(adapted from Saleh and Teich [28])
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4.1. Acousto-optic effect

frequency ν, free-space wavelength λ0 = c0/ν, in-medium wavelength λ = λ0/n, and
wavenumber k = 2π/λ incident at an angle θ relative to the z axis. Since in our setup the
optical frequency ν ∼ 300 THz is much greater than the acoustic frequency F ∼ 100 MHz

(in the radio frequency (RF) range), we assume a static “frozen” refractive index n. We
can thus replace the time-varying phase Ωt with a fixed ϕ. This incident optical wave
is diffracted at every variation of the refractive index. To determine the total reflected
optical wave, we first approximate the static sinusoidal variation of the refractive index as
a step function. We thus obtain a set of parallel planes that act as partial reflectors. The
resulting reflected optical wave is the sum of all partial reflections and generally composed
of an upshifted and downshifted wave in frequency space, called the +1st order and the
-1st order. Here, we concentrate on the +1st order and call it 1st order, the -1st order can
be treated in an analogous way. The transmitted optical wave is called the 0th order.

The diffraction efficiency η is defined as the ratio of the optical power of the 1st order P1

and the total optical power Ptot after the acousto-optic device [35]:

η ≡ P1

Ptot
. (4.1)

The maximum efficiency is reached for an angle of incidence where all the partial reflections
from the planes interfere constructively. This condition is realized if the optical path
difference inside the medium between two planes 2Λ sin θ is equal to the optical wavelength
in the medium λ. This defines the Bragg angle inside of the medium θb, the Bragg angle
outside of the medium θB and the Bragg condition (see Fig. 4.1):

sin θb ≈ θb =
λ

2Λ
= λ0F

2nvs
, for θB ≪ 1,

θB = λ0F
2vs

.

(4.2)

The same Bragg condition can also be stated as a vector relation kr = k + q, see Fig. 4.1)
Eq. (4.2) creates the impression that the maximum efficiency can be reached for any angle
θ by simply adjusting the acoustic frequency F . In reality, the acoustic-optic device
has an optimal operating frequency called the center frequency Fc. This is due to the
particular piezoelectric transducer and its tank circuit. As a result, we obtain one true
Bragg condition:

sin θb ≈ θb =
λ0Fc
2nvs

,

θB = λ0F
2vs

.

(4.3)
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4.1. Acousto-optic effect

If one were to align the angle of incidence θ of the acousto-optic device at frequency
Fc and one would than proceed to vary the acoustic frequency F , one would still see a
1st order beam. In fact, the RF bandwidth BW of an acousto-optic device is defined as
the width around the center frequency Fc ±BW/2 that results in half of the maximum
diffraction efficiency.

If we want to be able to explain why there is light despite violating Eq. (4.3), i.e., how
the diffraction efficiency behaves when the Bragg condition is not met, we have to extend
our simplified plane wave picture. We now consider beams that accurately describe light
generated by a laser or sound generated by a transducer [28] as shown in Fig. 4.2.

Incident optical beam Diffracted optical beam

Acoustic beam

Acoustic 
beam

Incident 
optical beam

Diffracted 
optical beam

Figure 4.2 | Interaction of an optical beam with an acoustic beam. (left) An optical beam of
angular divergence δθ incident at an angle θ interacts with an acoustic beam (green) of angular
divergence δθs generated by a piezoelectric transducer (gray) of length L and height H. The
diffracted optical beam has the same angle and divergence as the incident one. (right) The
geometric relations relevant for Bragg diffraction of an optical beam (red) of an acoustic beam
(green dashed lines) are shown. The incoming optical beam selects only part of the acoustic beam
(filled green area) with wavevectors qi that fulfill the Bragg condition for the optical wavevectors
ki. (adapted from Saleh and Teich [28])

According to Fourier optics, beams are just a superposition of plane waves with wavevectors
ki for optical, and qi for acoustic beams, respectively [28]. Their central directions occupy
a cone of angular divergence [28, 36]

δθ ≃ λ0
πw0

,

δθs ≃
1

2

Λ

L
.

(4.4)

In our initial discussion for waves we matched exactly one wavevector k of an optical

38



4.1. Acousto-optic effect

plane wave with one wavevector q of an acoustic plane wave (see Eq. (4.2)) to obtain the
maximum diffraction efficiency, actually necessary to see any diffraction at all. In analogy
to the plane wave picture and assuming δθs ≫ δθ, the efficiency for beams is optimized if
every ki finds a matching qi. This condition is best met if the central directions of the
optical and the acoustic beam fulfill Eq. (4.2), because these directions coincide with most
of the directions of the wavevectors ki and qi . If we thus change the acoustic frequency to
F = Fc and adjust the angle of incidence of the optical beam relative to our acousto-optic
device according to Eq. (4.3), we still obtain the maximum efficiency as in the plane wave
picture. To answer our initial question why we still see light when Eq. (4.3) is not met,
we leave the angle of incidence unchanged and only alter the acoustic frequency F . We
thus change the acoustic wavevectors qi. This situation is shown in Fig. 4.3.

First of all, since the ki stayed the same, we now have a different and smaller subset of
ki that interact with the qi at an angle θ = λ0/2vsF relative to the z axis outside of the
medium, according to Eq. (4.2). The optical beam is deflected by 2θ and we still see a
diffracted 1st order beam, but now weaker.

Additionally, the 1st order has shifted according to Eq. (4.2) and Eq. (4.3) by an angle
β ≡ λ0(Fc −F )/vs outside of the medium, compared to its direction for F = Fc. We define
α as the angle between the central direction of the acoustic beam (its energy flow) and the
bisector of the incident and 1st order beam and call this the Bragg angle error, Because
only the 1st order has shifted relative to the acoustic beam direction and the 0th order
remained at its initial position, we obtain a Bragg angle error of α = β/2 outside of the
medium and α = β/(2n) inside of the medium. The total deflection of the 1st order beam
outside of the medium relative to the incident optical beam is, as mentioned before, 2θ,
which defines the scan angle ∆θ:

∆θ = 2θ ⋅ BW
Fc

= λ0 ⋅BW
vs

. (4.5)

For later discussion, it is convenient to define a characteristic interaction length L0:

L0 ≡
n

λ0
( vs
Fc

)
2

(4.6)

A detailed analysis shows that in this case the diffraction efficiency is given by [28, 36]

η = ρ ⋅ sin2⎛
⎝
π

2

¿
ÁÁÀ2LMPa

λ20H

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ηP

⋅ sinc2 (πLα
Λ

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ηF

,
(4.7)
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4.2. RF Setup

where ρ is a nonlinear function mainly dependent on beam divergences, M is the figure
of merit – a material parameter describing the strength of the acousto-optic effect in the
material, and Pa is the acoustic power transformed from the electric RF power PRF by
the lossy transducer. Here, we assume full conversion and use both terms interchangeably.
The factors in Eq. (4.7) are the following:

1. ρ is the amplitude and a nonlinear function proportional to δθs/δθ.

2. ηP defines the dependence of the diffraction efficiency on the acoustic power PRF.
The optimal acoustic power for the maximum efficiency is given by P sat

a = λ20H
2LM .

This is the main application of acousto-optic modulators, varying the intensity of
the diffracted light via the acoustic power.

3. ηF defines the dependence of the diffraction efficiency on the acoustic frequency.
This is the main application of acousto-optic deflectors that vary the outcoming
angle of the diffracted light via the acoustic frequency.

We describe the difference between a modulator and a deflector after the next Section.

4.2 RF Setup

Before we apply the expression derived in Sec. 4.1 to our acousto-optic devices, we briefly
explain how we actually vary acoustic frequency or power in practice using the electronic
setup shown in Fig. 4.4.

The RF driver box (engineered by Karsten Förster, V7.1 ) used in the experiment can
be externally controlled by two signals: an amplitude modulation (AM) signal, ranging
between 0 − 6 V and a frequency modulation (FM) signal, ranging between 0 − 10 V. The
FM signal is fed to a voltage-controlled oscillator (VCO, Minicircuits, POS-150 ). The
output signal of the VCO is successively combined with the amplitude modulation in a
mixer. The resulting signal is

u(t) = AM(t) ⋅ sin [kVCO ⋅ FM(t) + ϕ], (4.8)

where kVCO is the linear voltage-to-frequency conversion factor of the VCO (see App.C
on page 93 for the calibration curves of the used RF drivers) and ϕ is a random phase.

41



4.2. RF Setup

AOM/AOD

RF driver

AM

FM

Figure 4.4 | Simplified electronic setup to control the acousto-optic devices. The RF driver
(schematic and sample picture) used in the experiment has two signal inputs consisting of
an amplitude modulation (AM) between 0 − 6 V and a frequency modulation (FM) between
0 − 10 V controlling a voltage-controlled oscillator (VCO, Minicircuits, POS-150 ). The input
signals shown are later used in the experiment, but not to scale. The FM signal is send to the
VCO and its out is combined with the amplitude modulation in a mixer, resulting in a signal
u(t) = AM(t) ⋅ sin [kVCO ⋅ FM(t) + ϕ], where kVCO is the conversion factor of the VCO and ϕ is a
random phase. This combined signal is sent to the transducer of the AOM/AOD and controls
the frequency and power of the resulting acoustic beam.
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4.3. Comparison: AOM and AOD

This combined signal is sent to the piezoelectric transducer of the AOM/AOD and thus
controls the frequency and power of the resulting acoustic beam.

4.3 Comparison: AOM and AOD

We can now compare the diffraction efficiency η and the scan angle ∆θ of the used
acousto-optic devices, namely the AOM (Gooch & Housego, AOMO 3080-198 ) and AOD
(Gooch & Housego, AODF 4090-6 ). This analysis will be very useful for the following
Sections, e.g., when we want to counteract efficiency losses while tuning the acoustic
frequency by simultaneously tuning the acoustic power. For convenience, all key figures
for both devices are summarized in Table 4.1.

Table 4.1 | Key figures for AOM and AOD. The data without errors was taken from [37–39] or has
smaller errors than significant digits. The remaining data was obtained from the fits of Fig. 4.5,
Fig. 4.6 and Fig. 4.7.

AOM AOD AOM AOD

Material TeO2 TeO2 Pmax
RF (W) 3.0 1.5

Acoustic mode Longitudinal Shear, off axis Active ap. (mm2) 2 × 1.75 2 × 2
w0 (mm) 0.79 0.47 ηmax 0.97 0.86
δθs (mrad) 1.12 3.06 δθ (mrad) 0.19 0.3
L (mm) 24.1(6) 1.1 L0 (mm) 6.2 0.1
M (10−15m2/W) 34.5 660 vs (mm/µs) 4.2 0.656
H (mm) 3.1 1.9 ∆θ (mrad) 6.4(2) 26.3(8)
Fc (MHz) 77.7(2) 89.8(2) BW (MHz) 25.2(8) 16.1(5)

For the subsequent analysis we assume a mean refractive index of n = 2.26 for both
devices, which corresponds to the material TeO2. This implies that we restrict ourselves
to an isotropic discussion and we say that anisotropic interactions, like in a shear-mode
device, only leads to a reduction of the acoustic velocity.

The beam is collimated after several attenuators at the position of the AOD by a 3:1
telescope with lenses of focal lengths 300 mm (Thorlabs, LA4579-C-ML) and 100 mm

(Thorlabs, LA4380-YAG-ML), having a waist w0 = 0.47 mm (see Table 4.2). The angular
movement of the AOD will later be reproduced at the vertical breadboard (see Fig.A.1
and Fig. A.2a) by a 4f system consisting of two 500 mm lenses (Newport, SPX055AR.33,
see Table 4.2).
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4.3. Comparison: AOM and AOD

Table 4.2 | Pictures of the beam at the AOD and as reproduced by a 4f system. The pictures
were fitted with a 2D Gaussian function (solid lines mark the 1/e2 value) and their long and
short axis waist sizes are denoted wD and wd, respectively.

Position AOD
Reproduced

50 mm before first
tunable lens

Picture

wd = 0.43 mm
wD = 0.46 mm

wd = 0.45 mm
wD = 0.48 mm

For reaching the maximum efficiency of the AOD, it is crucial to set the correct horizontal
p-polarization of the light with respect to the AOD’s mounting plane. This requires a
separate λ/2 waveplate before the AOD, since after the waveplate and Brewster plate
combinations, the light is only partially p-polarized [28].

To measure the diffraction efficiencies as a function of RF power, we set the AOM and
the AOD to their nominal center frequencies of 80 MHz and 90 MHz, respectively. We
ramped the RF power with a waveform generator (Agilent, 33220A) between the limits
of 0 − 6 V of the AM input of the RF driver (Frequency 10 Hz) and record the optical
power with a powermeter of sufficient bandwidth (Thorlabs, PM100D and sensor S121C ).
We converted the measured signals on an oscilloscope (Tektronikx, TDS 2024C ) using
the built-in scale of the powermeter V →mW for the optical power, and the calibration
curves V →W for the RF power (see App.C on page 93). We determined the power of
the 0th order without applied RF power to be 148.8 mW for the AOM and 8.50 mW for
the AOD (dashed line). The resulting diffraction efficiency ηP as a function of RF power
is shown in Fig. 4.5.

We fit the data for the AOM and the AOD with the function ηP defined in Eq. (4.7) using
only the height H of the acoustic transducer and absolute amplitude as free parameters,
the other variables are taken from [37–39]. From the fit we obtain an electrode height of
3.1 mm for the AOM and 1.8 mm for the AOD. When compared to the active aperture
of 2 × 1.75 mm2 and 2 × 2 mm2 for the AOM and AOD, respectively, both heights are
reasonable. The maximum efficiency is 0.97 for the AOM and 0.86 for the AOD, in
good agreement with their datasheets, and both show a saturation behavior as expected.
By looking at the amplitude ρ in Eq. (4.7), we expect that for these high diffraction
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Figure 4.5 | Diffraction efficiency ηP as a function of RF power PRF. The data for the AOM
(red) and the AOD (blue) was fitted by ηP in Eq. (4.7) (solid lines) using only the height H and
absolute amplitude as free parameters. The maximum efficiency (dotted lines) is 0.97 for the
AOM and 0.86 for the AOD. The maximum RF power PRF (dashed line) is 3 W for the AOM
(not shown) and 1.5 W for the AOD. Both the AOM and AOD show a saturation behavior.
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4.3. Comparison: AOM and AOD

efficiencies the acoustic divergence δθs must exceed the optical divergence δθ. Taking into
account the beam sizes at the devices (see Table 4.1), and using Eq. (4.4), we obtain for
the AOM δθs/δθ ≈ 6 and for the AOD δθs/δθ ≈ 10.

To measure the diffraction efficiencies as a function of acoustic frequency, we set the input
RF power to the AOM and the AOD to 1 W and 1.4 W, respectively. Then, we ramp the
acoustic frequency with the same waveform generator between the limits of 0 − 10 V of
the FM input of the RF driver (Frequency 10 Hz) and record the optical power with the
same powermeter as before. The absolute diffraction efficiency η is the product of both
ηF and ηP (see Eq. (4.7)). Thus we can treat ηF independently of ηP and normalized it
to its maximum value. The resulting normalized diffraction efficiency ηF as a function of
acoustic frequency F is shown in Fig. 4.5.
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Figure 4.6 | Normalized diffraction efficiency ηF as a function of acoustic frequency F . The
AOM has a center frequency Fc = 77.7(2)MHz and an approximated FWHM bandwidth BW =
25.2(8)MHz, obtained by doubling the visible right half of the bandwidth. The AOD has a higher
center frequency Fc = 89.8(2)MHz and a smaller bandwidth BW = 16.1(5)MHz compared to the
AOM. The data is fitted with ηF of Eq. (4.7) using Eq. (4.6). It is visible that the response curve
of the AOD is slightly asymmetric around its center frequency. The accessible acoustic frequency
is limited by the VCO. The error bars account for the limited resolution of the power meter and
the oscilloscope.

The AOM has a center frequency Fc = 77.7(2)MHz and an approximated FWHM band-
width BW = 25.2(8)MHz, obtained by doubling the visible right half of the bandwidth.
The center frequency is a little bit lower than the 80 MHz specified [38]. The bandwidth
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4.3. Comparison: AOM and AOD

is in good agreement with the one given in the datasheet [38] of 20 MHz at −10 dB return
loss. From the fit, using the calculated interaction length L0 (see Eq. (4.6)), we also
obtain a value for the length of the acoustic transducer electrode of 24.1(6)mm. Again,
if we compare this value to the real dimensions of a typical AOM device it appears
reasonable. The AOD has a higher center frequency Fc = 89.8(2)MHz and a bandwidth
BW = 16.1(5)MHz. The center frequency is very close to the 90 MHz specified in the
datasheet [39] while the bandwidth is considerably lower than the nominal 35 MHz. To
fix this discrepancy, the manufacturer suggested to align the AOD for maximum efficiency
at the upper and lower limits of the bandwidth/scanning range. We could not verify this
yet in the setup.

The data is fitted to the expression for ηF in Eq. (4.7). For the fit we reformulated ηF
using the definitions of the interaction length L0 (see Eq. (4.6)) and the Bragg angle error
α, giving ηF = sinc2(π/2L/L0F /Fc(1 − F /Fc)) with only the electrode length L as free
parameter. For the AOM, we thus obtain a ratio L/L0 ≈ 4 while for the AOD we obtain
L/L0 ≈ 11, and thus a normalized interaction length nearly three times bigger. These
ratios and the bandwidth of both devices are consistent with the theory curves given by
Isomet [36]. They also go well with the fact that, the shorter the normalized interaction
length, the less severe is a reduction of intensity due to misalignment (larger BW), and
the higher is the required RF power for saturation (higher PRF) similar to the AOM. It is
also visible that the rolloff of the AOD is slightly asymmetric around its center frequency.
This asymmetry in rolloff can be explained by a varying acoustic divergence δθs with
acoustic frequency F , shown in Fig. 4.3. For acoustic frequencies F < Fc, the acoustic
divergence is slightly larger than for Fc, and the incoming optical wavevectors ki can
interact with more acoustic wavevectors qi, yielding a higher intensity of the diffracted
beam. For acoustic frequencies F > Fc, the situation is reversed because the acoustic
divergence decreases.

Finally, we measure the relative reflectance angle, proportional to the scan angle ∆θ, as a
function of acoustic frequency. We set the AOM and AOD to an RF power of 1 W and
ramp again the acoustic frequency as described before. We then measure the position of
the 0th order, x0, and the change in position x of the 1st order with acoustic frequency
using a translation stage and a beam profiler (Cinogy, CMOS-1201-Nano). We note the
distance d̃ from the acousto-optic device to the beam profiler. From this distance and
the lateral displacement (x − x0), we compute the diffraction angle θ ∼ (x − x0)/d̃. The
results are shown in Fig. 4.7.

The data has been offset-shifted for the different minimum diffraction angles of 12 mrad

for the AOM and 101 mrad for the AOD. Linearly fitting the data according to Eq. (4.2),
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Figure 4.7 | Relative diffraction angle θ as a function of acoustic frequency F . The data has
been offset-shifted for the different minimum diffraction angles of 12 mrad for the AOM and
101 mrad for the AOD. The solid lines are linear fits to the data and agree with the linear behavior
of Eq. (4.2). The filled are indicates the 1σ confidence intervals of the fit. The AOM shows a much
flatter response curve with a slope of 0.2 mrad/MHz as opposed to the AOD with 1.5 mrad/MHz.
Error bars account for the uncertainty in the distance measurements.

48



4.4. Scanning system and time-averaged potentials

we find a slope of 0.17(1)mrad/MHz for the AOM 1.5(1)mrad/MHz for the AOD. The
8.8 times larger slope of the AOD is mainly due to the ≈ 6.4 times slower acoustic velocity.
This result emphasizes why AODs are preferable to AOMs when a light beam is to be
diffracted over a large range of angles. A good measure for the accessible diffraction
angles, i.e., where the acoustic frequency is in the RF band, is the scan angle defined in
Eq. (4.5). Taking into account the measured RF bandwidths of both devices we obtain a
scan angle of 6.4(2)mrad for the AOM and 26.3(8)mrad for the AOD.

4.4 Scanning system and time-averaged potentials

After we discussed the theory of acousto-optic interaction and analyzed the AOM and
AOD, we continue now by explaining the central ideas behind the scanning system.

It is possible to convert the angular displacement of the beam by the AOD into a parallel
displacement using a lens at the right distance as shown in Fig. 4.8.

Incident optical beam Scanned diffracted optical beam

Lens
Acoustic beamFrequency Modulation

Figure 4.8 | Scanning system using AOD and lens. A diffracted beam is scanned over an angle
∆θ by frequency modulating an AOD. This angular displacement can be fully converted into a
parallel displacement to the optical axis by making use of a lens that is its focal length f away
(elements not to scale). The resulting beam is elliptic and has a horizontal waist of whor,x and a
vertical waist of whor,y.

A Gaussian ABCD matrix calculation shows that this distance should be f , defining the
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optimal scanning condition:
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⎠
. (4.9)

Upon constantly scanning over the full scan angle, the resulting beam is elliptical with its
long and short axes corresponding to the horizontal and vertical beam sizes whor,x and
whor,y. Combining tan(∆θ/2) ≈ ∆θ/2 = whor,x/f and Gaussian optics [28], we deduce:

whor,x = ∆θ/2 ⋅ f,

whor,y =
λf

πwin
.

(4.10)

In combination both define a specific aspect ratio

AR = whor,x

whor,y
= ∆θπwin

2λ
. (4.11)

Depending on the frequency modulation function, the actual intensity distribution can be
tuned independently of the trap size as shown in Table 4.3.

Roy et al. [40] describe how to analytically calculate the frequency modulation function
needed for a parabolic intensity shape, shown in the last picture of Table 4.3. This
function assumes however a constant diffraction efficiency over the whole frequency range,
which is clearly not the case (see Fig. 4.6). To counteract these efficiency variations,
we also perform amplitude modulation (AM). As a first approach, based on Eq. (4.7),
we define a minimum efficiency of η/ρ = const. = 0.03 and choose a scanning range of
35 MHz. This scanning range corresponds approximately to the frequency range between
the first zeros of the diffraction efficiency in Fig. 4.6 of the AOD. These conditions now
define the frequency-dependent part of the diffraction efficiency ηF . We then calculate
the corresponding RF power-dependent part of the diffraction efficiency ηP = η/(ρηF ) to
produce constant efficiency across the tuning range. Inverting the function ηP (Pa), we
obtain the desired RF power PRF variation over one cycle. We can finally convert this RF
power to the AM function using the calibration data of App.C on page 93. The resulting
amplitude modulation function together with the frequency modulation function is also
shown in the last picture of Table 4.3. Intuitively, the RF power is increased at the edges
of the FM and lower in the center.

To benchmark the scanning system, an optional test point can be set up. It is located
after the AOD, consisting of another mirror and a lens of focal length f = 100 mm at
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4.4. Scanning system and time-averaged potentials

Table 4.3 | Normalized frequency modulation functions and resulting
beam shapes. Depending on the frequency modulation (FM) function,
one obtains different trap shapes. A square function produces two
distinct points, a triangular function a straight uniform line and a sine
function shows both features of distinct end points and uniform line.
The last function is analytically calculated to give a parabolic intensity
profile of the trap [40], looking very similar to an arccos function also
used in previous experiments (see, e.g., [41–43]). Also shown in the
last picture is the additional amplitude modulation used to counteract
trap imperfections through frequency-dependent efficiency losses of the
AOD. Intuitively, the RF power is increased at the edges of the FM and
lowered in the center. The pictures are not to scale.
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4.4. Scanning system and time-averaged potentials

a distance f from the AOD. We perform frequency modulation at 10 kHz. The data
presented subsequently was not taken with the newer AM function shown in Table 4.3, but
with an older one for a not polarization-optimized input beam to the AOD. The efficiency
ηP saturated not at 0.86 but already at 0.6 and thus the tuning range was smaller.
Nevertheless, no qualitative or substantial quantitative changes for the beam shapes are
expected. The resulting beam profiles are shown once with amplitude modulation (see
Fig. 4.9a) and without (see Fig. 4.9b).

(a) (b)

Figure 4.9 | FM trap shapes with and without AM. Pictures of the beam with FM, fitted with a
2D Gaussian (solid lines mark the 1/e2 value), and the intensity profile averaged over the vertical
direction. This intensity profile is fitted with a parabola and a Gaussian. (a) The beam with AM
has an AR of 22.1 and a more parabolic than Gaussian shape. (b) The beam without AM has a
smaller AR of 21.3, is slightly asymmetric and shows no clear parabolic or Gaussian intensity
profile.

Comparing the ARs 22.1 and 21.3 of the traps, we see that the trap size with amplitude
modulation slightly exceeds the trap size without amplitude modulation. Furthermore,
the amplitude modulation improves the trap intensity by “flattening” the diffraction
efficiency curve as expected, favoring a parabolic intensity profile.

The fast can the sound frequency be modulated is determined by the input beam size
and the crystal that has a particular speed of sound. The time to alter an optical beam
roughly corresponds to the time it takes a wavefront of the acoustic beam to propagate
across the whole optical beam of width 2win. This determines the so-called access time
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4.4. Scanning system and time-averaged potentials

and the corresponding modulation bandwidth (not to be confused with the RF bandwidth):

T = 2win

vs
,

MBW = 1

T
.

(4.12)

The modulation bandwidth is mainly limited by the used VCO in the AOM Driver, which
has a 3 dB modulation bandwidth of 100 kHz. We found that up to 10 kHz, no distortions
due to the limited modulation bandwidth are visible. Increasing the modulation frequency
above that limit causes the VCO to not correctly follow the favored, custom FM waveform,
i.e., not reproducing the sharp maxima and minima. As a result, the trap starts to look
more like in the sine modulation case shown in Table 4.3. If higher modulation frequencies
are desired, e.g., Baier [42] recommends the VCO model VCO190-112T from Varil.
The ratio of the modulation frequency to the trap frequencies is the figure of merit that
quantifies our degree of time-averaging. We calculate it after the next Chapter when we
simulate the optical dipole trap.

We proceed, in the next Chapter, with explaining the telescopes of the transport laser
with shape and amplitude control.
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5 Dynamical beam shaping

In the last Chapter, we saw how to create an elliptical beam shape using an acousto-optic
deflector. In this Chapter, we describe how we use focus-tunable lenses to perform
dynamical beam shaping.

In Sec. 5.1, the general operation principle of the focus-tunable lenses is explained. In
Sec. 5.2, we briefly show that the implemented telescopes do not affect the aspect ration
of our elliptical beam.

5.1 Focus-tunable lenses

The focus-tunable lenses used in our setup can alter their focal length. They play an
important role throughout the experiment, serving as means to tune beam sizes or
enabling optical transport. For this reason, we explain their operation principle here, that
is accompanied with certain limitations.

The layout of all tunable lenses we use in the setup is shown in Fig. 5.1.
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5.1. Focus-tunable lenses

Bobbin with voice coil Elastic membrane

ContainerOptical fluid

Figure 5.1 | Operating principle of the focus-tunable lenses. Inside the focus-tunable lens, an
optical fluid is infolded by an elastic polymer membrane. An electromagnetic actuator, controlled
by electrical current, can exert pressure on the container. As a result, the lens’ curvature and
therefore its focal length are changed. (adapted from Optotune [44])

Inside the tunable lens, an optical fluid is contained within an elastic polymer membrane.
The focal length is changed using an electromagnetic actuator, controlled by an electrical
current. The current is limited to 250 mA for all tunable lenses used in the setup [44].
This actuator can exert pressure on the container and change the lens’ curvature and
therefore its focal length. To conclude, we can control the focal length of the focus-tunable
lens by current modulation.

We use a custom setup to drive this current through the lens coils. It is composed of a
microcontroller (Arduino, Leonardo ETH ) that controls a 12-bit digital-to-analog (DAC)
converter chip (Microchip, MCP4922 ). This DAC, in turn, is connected to a current driver
(Thorlabs, LD1255R), that converts a range of 0 − 5 V to a current range of 0.2 − 250 mA.

Several things should be kept in mind when operating the focus-tunable lenses:

1. Upon mounting the lens in an upright position, gravity pulls the optical liquid
inside the lens down and induces aberrations. Thus, operating the lenses with
their horizontal axis parallel to the ground is recommended to minimize wavefront
distortions.

2. Larger beam sizes on the order of the clear aperture of the lenses also cause optical
aberrations. One should therefore use the smallest beam sizes possible.

3. Correct alignment is crucial for reducing shifts of the focus position in the image
plane upon changing the focal length of the lens. To align the tunable lenses,
we continuously ramp the current through them and observe the resulting beam
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position at different distances in the image plane with a camera. When a movement
of the beam center at different distances is not detectable on the camera anymore,
the tunable lenses are correctly aligned.

4. Temperature changes also have an effect on the focal length of the lenses. If the
current through the coil or a high-power laser beam heat up the lens, the focal
length increases due to a decrease in refractive index of the optical fluid. At the
same time, the optical fluid expands and decreases its focal length. The latter effect
is the dominant one [44]. One way to correct for this, is feedforward control. By
reading out the temperature of the lens through a built-in sensor, one can compute
an interpolated calibration curve “focal length vs. current” from the two built-in
calibration curves [45].

5.2 Effect of telescopes on the trap size

As evident from Eq. (4.11) and Eq. (4.5), the resulting aspect ratio of a scanned laser
beam is only dependent on intrinsic properties of the laser, the AOD and the incident
beam size. Telescopes, obeying the optimal scanning condition of Eq. (4.9), magnify win

by M , and demagnify ∆θ by M [28]. The resulting AR thus remains unchanged and we
can tune the beam size without affecting the aspect ratio.

To dynamically tune the beam size of the optical dipole trap in our setup, we use two of
the tunable lenses (Optotune, EL-10-30-TC ), that can vary their focal length between
50 − 120 mm, in a telescope configuration (see Fig. 1.1). Regarding the aforementioned
effects, the tunable lenses are mounted lying flat, and an additional fixed telescope of
magnification 4 is used to achieve smaller beam sizes at the tunable telescope (see Fig. 1.1).

In the next Chapter, we proceed with describing in detail how we can form optical dipole
traps with Gaussian beams.
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6 Optical dipole trap with
shape and amplitude
control

Previously, we explored the theoretical background for optical trapping and cooling of
strontium. We also looked at every individual element of the optical dipole trap setup, that
enables shape and amplitude control. These elements were the laser, the acousto-optic
deflector and the focus-tunable lenses. In this Chapter, we therefore combine all these
components and analyze the performance of the setup.

We start by reviewing how a single Gaussian beam forms a dipole trap in Sec. 6.1. We
then extend our discussion in Sec. 6.2 to combined, arbitrarily shaped Gaussian beams,
forming a crossed dipole trap (XODT). This XODT represents our combined horizontal
and vertical dipole trap. We thus continue with deducing the requirements of this XODT
for the experiment and simulate its beam sizes in Sec. 6.3. Next, in Sec. 6.4, we realize
the trap with our test setup and analyze its performance. Finally, in Sec. 6.5, we take
realistic powers used for our crossed optical dipole trap and calculate its key parameters,
namely the trap depths and trap frequencies.

6.1 Single circular and elliptical beams with gravity

In this Section, we continue our discussion of optical dipole traps with Gaussian beams
from Sec. 2.4 and extend it.

First of all, we define a coordinate system inside our octagonal MOT chamber that we
use from on and that is summarized in Fig. 6.1.
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6.1. Single circular and elliptical beams with gravity

MOT chamber

Horizontal optical
dipole trap

Top view Front view

gravity

Vertical optical
dipole trap

gravity

Figure 6.1 | Schematic view of the octagonal MOT chamber. (left) A top view of the octagonal
MOT chamber (gray) shows the horizontal optical dipole trap which is elongated along the x
direction. Also depicted is the vertical dipole trap (red dot). Gravity points into the x − z plane.
(right) A front view of the MOT chamber through the viewport for transport shows the vertical
optical dipole trap. Also depicted is the elongated horizontal dipole trap (red ellipse). Gravity
points downwards.

Consider an elliptical Gaussian beam that has the following intensity distribution [28]:

I(x, y, z) = 2P

πwx(z)wy(z)
exp[−2( x2

w2
x(z)

+ y2

w2
y(z)

)], (6.1)

where P denotes the total power of the beam, wx,y(z) = wx/y,0
√

1 + z/zRx,y is the 1/e2

beam radius with Rayleigh range zRx,y = πw2
x/y,0/λ along the respective axis, minimal

waist wx/y,0, and vacuum wavelength λ = λ0, and x, y, z are the coordinates specified in
Fig. 6.1.

For small excursions, we can approximate the dipole potential defined in Eq. (2.10a) as a
harmonic potential

Vdip ≈ V harm
dip =∑

i

1

2

∂2Vdip

∂x2i
x2i , (6.2)

over all coordinates xi. This harmonic approximation, together with the contribution from
the gravitational potential mgy, gives us the harmonic dipole potential for an elliptical
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6.2. Crossed beams at 90○ with gravity

Gaussian beam with gravity :

Vell ≈ V harm
ell = V0
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(6.3)

where we obtained the trap frequencies ωi through comparison of the resulting potential
with the harmonic potential 1/2mω2

i x
2
i . We also defined the amplitude V0

V0 = −
1

2ε0c
Re(α) ⋅ 2P

πwx,0wy,0
, (6.4)

and an effective Rayleigh range zReff

zReff =
zRxzRy√

1
2(z2Rx

+ z2Ry
)
.

(6.5)

We reproduce the already known case of a circular Gaussian beam (see Sec. 2.4) by taking
r2 = x2 + y2, w0 = wx,0 = wy,0 and zReff = zR, giving the harmonic dipole potential for a
circular Gaussian beam with gravity :

Vcirc ≈ V harm
circ = V0(1 − 2r2

w2
0

− z2

z2R
) +mgy (6.6)

6.2 Crossed beams at 90○ with gravity

Knowing the dipole potential for a single beam, we can also find the combined dipole
potential of several beams. To keep the expressions simple, we restrict ourselves to the case
of two elliptical Gaussian beams crossed at 90○. For including arbitrary angles, the reader
is referred to Baier [42]. We denote the dipole potentials of our horizontal ODT by Vhor

and our vertical ODT by Vver. To deduce the dipole potential of our XODT, we simply
add both horizontal and vertical potential, as well as the gravitational potential mgy while
paying close attention to the geometry depicted in Fig. 6.1. A harmonic approximation
of the resulting potential gives the harmonic dipole potential for two crossed, elliptical
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Gaussian beams with gravity :

Vcrossed ≈ V harm
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(6.7)

where zRhor/ver,eff denotes the effective Rayleigh range of the horizontal or vertical dipole
trap and whor/ver,xi denotes their minimal waist along a specific axis.

With the knowledge of this Chapter, we are able to calculate trap depths and trap
frequencies of various combinations of Gaussian beams. Before we do that, we deduce the
requirements for our dipole trap, mainly the beam sizes, in the following Section.

6.3 Requirements

To infer the beam sizes for the horizontal and vertical dipole traps (HODT, VODT), we
first think about the requirements for trapping the atoms. In the crossed dipole trap, the
horizontal and vertical traps fulfill different purposes:

1. The HODT mainly supports the atoms against gravity and sets the trap depth
through its beam waists whor and power Phor (see Sec. 6.1). Therefore, it will be also
used for evaporative cooling. Looking at Fig. 2.5a and Fig. 2.5b, we remember that
the red MOT for strontium typically has an elliptical or even a “pancake” shape.
To reach a high transfer efficiency from the red MOT into the HODT, we should
thus mode-match both traps. This is the first reason why an elliptical HODT is
preferable. During evaporation, atoms leave the trap predominantly in the vertical
direction aided by gravity. Consider focusing the HODT tightly in the vertical y
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direction, achieving a small vertical waist whor,y, while maintaining a elongated
waist whor,x in the horizontal x direction. By doing this, we generate a high trap
frequency ωy (see Eq. (6.3)) compared to the scattering rate. High-energy atoms
produced in a collision are thus more likely to escape the trap vertically before
colliding with other atoms and possibly removing them from the trap. This is the
second reason why we need an elliptical HODT.

2. The VODT mainly controls the density of the sample and confines the atoms to the
horizontal plane. It does not support them against gravity. Regarding evaporative
cooling, we need a high rate of elastic collisions for thermalization of the sample,
while maintaining low losses, e.g., by three-body collisions [19]. It turns out that the
density is the only parameter available to tune this ratio. We can tune the density
via the waist wver and power Pver of the vertical dipole trap. The best parameters
are highly dependent on the isotope.

For convenience, we review a simplified version of the setup, engineered to meet those
requirements, once more in Fig. 6.2. A complete sketch of the setup is shown in Fig.A.1
and Fig.A.2a.

Acousto-
optic
deflector

Horizontal 
optical 
dipole trap

Telescope
tunable lenses

Vertical optical 
dipole trap

Transport 
tunable lens

Vertical optical 
dipole trap

M = ± 2.4

150 mm

M = 4

750 mm

Figure 6.2 | Schematic overview of the setup for the optical dipole trap with shape and ampli-
tude control. The HODT beam is first sent through an acousto-optic deflector. The beam is
subsequently magnified on the vertical breadboard by the adjustable telescope with magnification
M = ±2.4 and the fixed telescope with magnification M = 4. The transport tunable lens is idle at
this stage. The HODT beam finally is focused onto the atoms with a lens of 150 mm focal length.
The VODT beam is focused by a 750 mm lens.

In the setup, the HODT beam is first deflected by the acousto-optic deflector (Gooch
& Housego, AODF 4090-6 ). The beam is then magnified by our adjustable telescope,
consisting of two focus-tunable lenses (two Optotune EL-10-30-TC ) to a magnification
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6.3. Requirements

of 1.2. According to [44], both lenses are able to tune their focal length ranging from
50 − 120 mm. This range enables, in principle, a positive or negative magnification of 2.4.
This magnification is once more increased by the fixed telescope of magnification 4 that
uses a 20 mm (Optosigma, HFTLSQ-15-20PF1 ) and 80 mm lens (Lightpath Technologies,
GPX40-80 ). The resulting beam is focused through the final lens with f = 150 mm

(Optosigma, HFDLSQ-30-150PF1 ).

For the VODT, we use a split-off from the main beam of the fiber laser. We plan to
extend this beam to w0 = 4.4 mm and focus it onto the atoms by a 750 mm lens. This
procedure would give us a waist of wver = 58µm for the vertical optical dipole trap.

To show that this setup fulfills our requirements for the HODT, we simulated the
backpropagation of different final beam waists whor,y with an ABCDmatrix calculation [32],
giving us different input beam waists win. We finally chose a waist of whor,y = 23µm,
obtained with an input waist of win = 0.47 mm. This input waist is a good compromise
between the beam size for the AOD, recommended in the datasheet [39], the HODT
requirements, and, as we see later, the optical transport. The results of the simulation
are shown in Fig. 6.3.

67 139 100 142 170 75

Figure 6.3 | ABCD matrix simulation of the HODT. The propagation of an input beam of waist
win = 0.47 mm for the HODT (red filled area) is simulated through the setup shown in Fig. 6.2
using Gaussian ABCD matrices. The adjustable telescope has a magnification of 1.2. We obtain
a final beam size of wd = 23µm. Also shown is the deflection of the beam center by the AOD,
simulated using ray ABCD matrices (red line). The setup is not perfectly fulfilling the optimal
scanning condition of Eq. (4.9). In this case, all rays in between the telescopes and after the final
would be parallel to the optical axis. Taking a scanning angle of θ = 53.5 mrad, we obtain an
elongated waist whor,x = 541µm. Also shown is the reshaped beam of waist wtrans = 148µm, later
used for the transport. It is generated by the same input waist and explained in the subsequent
Chapter (blue filled area).
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We simulate the propagation of an input beam of waist win = 0.47 mm for the HODT
through the setup using Gaussian ABCD matrices. The adjustable telescope has in the
simulation a magnification M = 1.2. Together with a fixed magnification M = 4 and
a final lens with focal length 150 mm, we obtain a final beam size of wd = 23µm. To
simulate the elongated HODT for time-averaged potentials, we calculate the deflection of
the beam center by the AOD using ray ABCD matrices. As can be seen from this trace,
the setup is not perfectly fulfilling the optimal scanning condition of Eq. (4.9). In this
case, all rays in between the telescopes and after the final would be parallel to the optical
axis. If we assume a scanning angle of θ = 53.5 mrad, we obtain an elongated waist of
whor,x = 541µm. In total, this gives us an aspect ratio of AR = 23.5.

6.4 Performance

After the simulation, we can proceed to realize the horizontal optical dipole trap in our
test setup.

The test setup used is equivalent to the one we plan to install in the experiment, which is
shown in completeness in Fig.A.1 and Fig.A.2a. To obtain the desired beam sizes, we
iteratively varied the currents of the tunable lenses in the adjustable telescope and the
position of the final lens. As a result, setting the currents to i0 = 250 mA, the specified
maximum through the lens coils, and i1 = 88 mA gave us the expected beam size. The
resulting beam was recorded with a beam profiler and is shown in Fig. 6.4.

The resulting trap has a long axis waist wD = 541µm and a short axis waist wd = 23µm,
giving an aspect ration of AR ≈ 23.5, equal to the simulated one. Even higher AR are
reached compared to the beams at the test point, which was 22.1 (see Fig. 4.9a) and
presumably closer to the optimal scanning condition. This is not expected since we
assumed from Fig. 6.3 that we would lose some of the scanning potential. Also, from
the scanning range used of 35 MHz, we calculate a scanning angle of 52.5 mrad using the
AOD slope of 1.5 mrad/MHz (see Fig. 4.7). This result only slightly deviates from the
53.5 mrad used in the simulation. The profile is again slightly asymmetric and shows no
clear parabolic or Gaussian intensity profile. For the measurement, the amplitude and
frequency modulation was left unchanged, compared to the optimization at the test point
(see Sec. 4.4). However, we did reduce the attenuation at the last attenuator for easier
alignment, which changed the polarization before the AOD. Since we did not optimize for
polarization at the AOD again, the intensity profile slightly deviates from the optimum.
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Figure 6.4 | Horizontal optical dipole trap. (top) The resulting trap is
fitted with a 2D Gaussian (solid line marks the 1/e2 value). It has a
long axis waist wD = 541µm and a short axis waist wd = 23µm, giving an
aspect ration of AR ≈ 23.5. (bottom) The intensity profile averaged over
the vertical direction is shown. The profile is again slightly asymmetric
and shows no clear parabolic or Gaussian intensity profile.
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6.5. Trap potential and trap frequencies

6.5 Trap potential and trap frequencies

Since we know the requirements of our optical dipole trap and tested its performance, we
can calculate the trap potential and trap frequencies as outlined in Sec. 6.2.

We calculate the resulting crossed dipole trap potential for the HODT with waists
whor,x = 541µm and whor,y = 23µm, respectively, shown in Fig. 6.4, and our planned
VODT with waist wver = 58µm. In this definition, we used the geometry shown in Fig. 6.1.
To calculate the total potential, we use Eq. (6.1), Eq. (2.10a) and the mass of 87Sr. We
assume a typical power of Pver = 100 mW for the VODT [19]. As before, we only consider
the dominant blue MOT transition, effectively modeling strontium as a two-level system.
The results are shown in Fig. 6.5.
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Figure 6.5 | Crossed dipole trap potential along the axis of gravity for different HODT powers.
The crossed dipole trap potential was calculated according to Eq. (6.1) and Eq. (2.10a) using the
geometry in Fig. 6.1. The beam sizes used for the HODT are the ones of Fig. 6.4. For the VODT
we expect a waist of wver = 58µm. The power of the VODT is held constant at 100 mW while
the power of the HODT is varied through 2 W (light red), 5 W (mid red) and 10 W (dark red)
yielding trap depths of kB × 2µK, kB × 10µK and kB × 22µK (colored filled areas).

Looking at the trap depths of Fig. 6.5, a minimum power of 5 W for the HODT seems
reasonable, if we want to trap atoms with ∼ 1µK, produced in the red MOT. Changing the
power of the VODT only affects the offset of the trap and does not change its depth. From
the harmonic approximation (see Eq. (6.7)), we obtain the trap frequencies ωx = 2π×57 Hz

in the horizontal direction, ωy = 2π × 488 Hz along the axis of gravity and ωz = 2π × 53 Hz

along the later axis of transport. Looking at the ratio of modulation frequency of 10 kHz

and ωx, we see that we modulate ∼ 175 times faster than the trap frequency. Baier [42]
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6.5. Trap potential and trap frequencies

reports, that already a factor of 100 along this axis is sufficient for the atoms to not heat
up.

In conclusion, we are able to create sufficient sizes for the horizontal optical dipole trap.
In addition, we are also able to modulate it fast enough, such that the atoms indeed
experience a time-averaged potential.

We proceed with the optical transport in the next Chapter.
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7 Optical transport

The next step, after trapping the atoms in the dipole trap and evaporatively cooling them,
is the optical transport from the MOT to the science chamber, which is described in this
Chapter.

In Sec. 7.1, we start by presenting the principles of optical transport. We also deduce the
requirements of the transport for the experiment and simulate its beam sizes. In Sec. 7.2,
we again realize the optical transport in our test setup and analyze its performance.
Finally, In Sec. 7.3, we take realistic powers used for our transport trap and calculate the
trap depths and trap frequencies. These are essential to know to achieve high transport
efficiencies without heating, e.g., choosing the right transport duration and power.

7.1 Theory and requirements

After capturing the atoms in the elliptical optical dipole trap, we reshape the beam to
a circular waist of wtrans = 148µm. Suitable for transport, we consider an evaporative
cooling step at this point [19]. Here, however, we concentrate on the subsequent optical
transport.

For the transport, we again simulated the backpropagation of different final beam waists
wtrans through the setup on the vertical breadboard (see Fig. 1.1) with an ABCD matrix
calculation [32], giving us different input beam waists win. But as opposed to before, we
start from a distance ∼ 100 cm away from the initial position of the atoms, corresponding
to the maximum planned transport distance. To understand how the transport works, we
first discuss the lower part of Fig. 7.1.

As an example, let us choose a transport waist wtrans = 148µm and a transport distance
ztrans = 100 cm, defined as the distance between the initial focus at atoms. The initial
focus at the atoms is the zero in Fig. 7.1, and the focus after transport is 100 cm away
along the negative axis.
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7.1. Theory and requirements

zbp

d fTL
trans

f

Figure 7.1 | ABCD matrix simulation of the optical transport. (top) The beams for the different
configurations, circular (blue) and transport (green), were simulated with the optical setup
using Gaussian ABCD matrix optics . All optical elements are at their real distances. Both
configurations are simulated with the same input beam of w = 0.47 mm and give the same output
beam size wtrans = 148µm. The circular beam was simulated using f0 = 82 mm, f1 = 51 mm and
f2 ∼ ∞ for the tunable lenses from right to left. The transported beam was generated using
f0 = 85 mm, f1 = 77 mm and f2 = −105 mm. (bottom) The cutout shows the transported beam
backpropagated through the final lens f . The distance between the position of the focused beam
and the final lens is called the distance of backpropagation zbp. A diverging, tunable lens of focal
length f trans

TL has to be placed somewhere between the final lens at distance d and the focus to
achieve the transport (see text for details).
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7.1. Theory and requirements

We can let this Gaussian beam backpropagate using ABCD matrices [32] all the way
through our final lens of focal length f . The backpropagated beam is focused by the
final lens at a distance zbp. This tells us, what beam we have to generate to perform our
transport. Coming back to the upper part of Fig. 7.1, assume that we have a collimated
beam incident on our transport tunable lens. We want to generate our backpropagated
transport beam from this incident collimated beam. For this to happen, we have to
position our special, diverging tunable lens such that its separation from the final lens
d and its negative focal length f trans

TL equal the backpropagated distance, zbp, of our
transport beam. This defined the equation of backpropagation:

zbp
!= d + f trans

TL , f trans
TL ∈ [−100 mm,∞). (7.1)

This condition already implies a negative focal length of the tunable lens. Therefore,
we use here a different model (Optotune, EL-16-40-TC, custom), that is also able to
generate negative focal lengths f trans

TL ∈ [−100 mm,∞). If this condition can be fulfilled
for the geometrically constrained distance d and the limited f trans

TL , we can perform a
transport over the distance ztrans with the desired waist wtrans.

Fig. 7.1 shows how the backpropagation distance zbp varies as a function of the transport
distance ztrans.

Given a transport distance ztrans and given that Eq. (7.1) can be fulfilled for this distance,
a larger beam waist simplifies the transport since the focal length f trans

TL needs to be
changed by a smaller amount. At the same time, if one is limited by the backpropagation
distance zbp, a smaller transport waist enables a larger transport distance. For large
transport distances ztrans ∼ 1000 mm, the behavior of all waist sizes becomes comparable.

As a good starting compromise, we thus chose wtrans = 148µm and realized it in Fig. 7.1
using f0 = 85 mm, f1 = 77 mm and f2 = −105 mm. The circular beam that marks our
starting point of the transport was generated using f0 = 82 mm, f1 = 51 mm and f2 ∼∞.
We realized both configurations with the same input beam of w = 0.47 mm.

From the different focal lengths of the telescope tunable lenses we see, that in general,
we need to vary the beam size before the transport tunable lens to generate a focus of
constant waist. Only for the special case where d = f , one can see from a brief ray ABCD
matrix optics calculation that we would obtain a transport with conserved beam waist [46].
Due to geometrical constrains like the ideal scan condition, necessary to achieve the
maximum aspect ratio of the horizontal dipole trap, we can only come close but not
actually meet this condition in our setup.
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Figure 7.2 | Simulated backpropagation distance zbp as function of transport distance ztrans.
The backpropagation distance zbp as function of transport distance ztrans was simulated with
Gaussian ABCD matrix optics for different transport waists wtrans (green lines). The dashed line
indicates the backpropagation distance of 172.4 mm used in Fig. 7.1 and approximately realized
in the setup. As apparent from Eq. (7.1), the backpropagation distance can be tuned by changing
the distance d between the final lens and the transport tunable lens, or by adjusting the focal
length f trans

TL of the transport tunable lens. Given a transport distance ztrans and given that
Eq. (7.1) can be fulfilled for this distance, a larger beam waist makes it easier to transport since
the focal length f trans

TL needs to be changed by a smaller amount. At the same time, if one is
limited by the backpropagation zbp, a smaller transport waist enables a larger transport distance.
For large transport distances ztrans ∼ 1000 mm, the behavior of all waist sizes converges.
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7.2. Performance

7.2 Performance

After the simulation, we can proceed to realize the optical transport in our test setup.

The test setup used is equivalent to the setting we plan to install in the experiment,
which is shown in completeness in Fig.A.1 and Fig.A.2a. We determined the position
of the focus using a beam profiler on a rail and finding the minimal cross-sectional area
of the beam since this corresponds to the point of highest intensity in a real trap. First,
we adjust the current through the tunable lenses i0 and i1 of the adjustable telescope
to obtain a mean waist wtrans = 148µm at the position of the atoms without using the
transport tunable lens. Now, we subsequently increased the current of the transport
tunable lens i2 and adjusted the currents i0 and i1 to give the same waist wtrans in every
measurement. We note that for continuous optical transport, different current ramp
profiles can be used [46]. We then fit every measured beam with a 2D Gaussian and
obtain its waists along the long and short axis, denoted wD and wd, respectively, and their
ratio AR. The resulting pictures are shown in Fig. 7.3 with the corresponding currents in
Fig. 7.4.

Figure 7.3 | Optical transport. Sample pictures of the beam at its focus were taken for different
transport distances ztrans along the transport axis z. The beam colors correspond to the simulated
beams in Fig. 7.1 and applied currents at each of the tunable lenses in Fig. 7.4. Every picture is
fitted with a 2D Gaussian (solid lines mark the 1/e2 value) and shows the waists along the long
and short axis of the beam, denoted wD and wd, respectively (solid lines), and their ratio AR.
Without the transport lens, the reshaped circular beam (blue) is almost fully round with AR = 1.0.
When the transport lens is actively operated, the beam acquires an additional astigmatism
apparent by the larger AR ≈ 1.2. The additional astigmatism is comparable for all transport
distances.

Without the transport lens, we can see that the reshaped circular beam is nearly round with
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Figure 7.4 | Currents of the tunable lenses used for the optical transport. The currents applied
to the three tunable lenses before (blue) and during transport (green) are shown (see Fig. 7.3).
Higher currents translate to smaller focal lengths. No temperature stabilization was used in these
measurements. All currents applied to the corresponding tunable lenses increase or decrease in
a monotonous manner. For the telescope tunable lenses 0 and 1, the current is always positive
and thus converging. For the transport tunable lens 3, the current is always negative and thus
diverging.
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7.3. Trap potential and trap frequencies

AR = 1.0. When the transport lens is actively operated, the beam acquires an additional
astigmatism apparent by the larger AR = 1.2. The additional astigmatism is comparable
for all transport distances and thus the transported beam shape is nearly constant. A
non-perfect alignment through the last lens is probably causing the astigmatism, since in
the setup, both the tunable lens and the final lens are aligned with the same mirrors. For
the alignment, we followed the same procedure outlined in Chapter 5.

During the individual measurements, we could observe that the focus position in the
image plane on the beam profiler shifted by several mm. This in-plane shift is consistent
with non-ideal alignment of the transport tunable lens. One improvement would be to
change the last, fixed mirror on the vertical breadboard to a kinematic one. Also, Morales
[45] reports that tilting the final lens helps to counteract the astigmatism caused by the
transport tunable lens.

7.3 Trap potential and trap frequencies

Finally, we calculated the trapping potential along the axis of transport z using Eq. (6.1)
and Eq. (2.10a) for a waist of 148µm and a power of 15 W. We note again, that the tunable
lenses are actually the most sensitive element in the optical setup with a maximum optical
power density of 10 kW/cm2. In the simulation, the smallest beam at the tunable lenses
is the input beam waist of win = 0.47 mm giving an optical power density of ∼ 2 kW/cm2,
well below this threshold. The results of the calculations are shown in Fig. 7.5a.
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Figure 7.5 | Trapping potentials of the transport beam. (a) The dipole potential along the axis
of transport z is calculated using Eq. (6.1) and Eq. (2.10a) for a waist of 148µm and a power of
15 W. The resulting trap depth is kB × 20µK over the shown distance interval around the focus.
The axial trap frequency according to Eq. (6.3) is ωz = 2π × 0.2 Hz. (b) The dipole potential along
the axis of gravity y is calculated in an analogue way. The resulting trap depth is kB × 5µK. The
corresponding trap frequency according to Eq. (6.3) is ωy = 2π × 99 Hz.
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7.3. Trap potential and trap frequencies

Along the axis of transport, the trap depth is kB × 20µK over the shown distance
interval of 40 mm around the focus. One could think of decreasing the trap size in a real
experiment to achieve stronger localization of the atoms. Léonard et al. [46] report on
using wtrans = 47µm and a power of 3.5 W for a transport distance of 28 cm with 87Rb.
The corresponding axial trap frequency is ωz = 2π × 0.2 Hz. If we choose the transport
duration larger than 1/fz, we assume that the cloud adiabatically follows the transported
trap and no dipole oscillations are excited. This would allow transport durations on
the order of several seconds. We note that this is only a rough order of magnitude
estimate and the exact proportionality has to be determined specifically, enabling ,e.g.,
full suppression of these oscillations [46, 47].

We also calculated the dipole potential along the axis of gravity y for a waist of 148µm

and a power of 15 W. The resulting trap depth is kB × 5µK, which should be sufficient
for the atoms in the red MOT with a temperature of ∼ 1µK. The corresponding trap
frequency is ωy = 2π × 99 Hz.

Léonard et al. [46] found highly nonlinear behavior of heating and transport efficiency as
functions of transport duration and power. Thus in conclusion, we expect the transport
to happen on the order of several hundreds of µs without significant heating or atom loss,
but the optimal parameters are yet to be determined in the experiment.

76



8 Conclusion and outlook

The goal of my Master’s thesis was the design and implementation of a system that
combines a shape and amplitude controllable optical dipole trap (ODT) with a means for
optical transport.

In the setup presented here, we generated a time-averaged horizontal ODT for strontium
atoms using an acousto-optic deflector (AOD) that scans a 1070 nm laser beam with a
10 kHz modulation frequency. We took advantage of a particular frequency modulation
function [40], producing an elongated parabolic trap potential. Additionally, we used
custom amplitude modulation to counteract the non-uniform efficiency of our AOD over
the scan range. By applying dynamical beam shaping through our tunable telescope we
achieved an elliptical horizontal ODT with small axis waist whor,y = 23µm in the vertical
direction, and long axis waist whor,x = 541µm in the horizontal direction, yielding an
aspect ratio of AR = 23.5. Subsequently, we plan on combining the horizontal with a
vertical ODT of waist wver = 58µm to generate a crossed dipole trap. Using typical beam
powers for the vertical and horizontal ODT of Pver = 100 mW and Phor = 5 W [19], we
expect a trap depth of kB×10µK along the vertical axis of gravity. This trap depth should
be sufficient to trap atoms from our second, “red” magneto-optical trap (MOT) with a
temperature of ∼ 1µK. The corresponding trap frequencies are ωx = 2π × 57 Hz in the
horizontal direction, ωy = 2π × 488 Hz along the axis of gravity and ωz = 2π × 53 Hz along
the axis of transport. All trap frequencies are considerably smaller than the modulation
frequency ensuring that the atoms will experience a time-averaged potential.

To prepare the horizontal ODT for optical transport, we reshaped the horizontal ODT
from an elliptical to a circular shape, resulting in a waist of wtrans = 148µm. By using
a third focus-tunable lens in a diverging mode, while also simultaneously adjusting the
tunable telescope, we achieved a reproduction of the same waist over a distance of 95 cm.
Using an optical power of Ptrans = 15 W, the resulting trap depth is kB × 5µK along the
axis of gravity, which should be sufficient to transport the atoms without significant
losses. The trap frequency along the axis of transport is ωz = 2π × 0.2 Hz, that also deter-
mines the order of magnitude of the transport duration, expected to be several seconds [46].
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Looking towards the future, several aspects are yet to be addressed: Regarding the scan
system, PID controlling the desired amplitude modulation would be desirable to achieve
even more homogeneous trap shapes. Additionally, the temperature stabilization of all
tunable lenses used in the setup to ensure reproducible and stable performance will be
of major importance. Undoubtedly, however, the comparison between the theoretical
predictions and the optimal experimental parameters will be of greatest interest to us,
especially with regards to evaporative cooling. It will be exciting to see how the setup
engineered here integrates into the experimental apparatus and we hope that it serves
as a valuable addition to our experiment on the way of exploring fascinating quantum
many-body physics with strontium.
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A

Complete optical setup

In this part of the Appendix, we present the complete optical setup, that was designed
and implemented during this Master’s thesis.

The first part of the complete optical setup is used for generating the vertical optical
dipole trap (VODT) and part of the horizontal optical dipole trap (HODT) and shown in
Fig.A.1

After the fiber output, the laser is attenuated and split into the HODT and VODT part.
The attenuators and splits consist of λ/2 plates in combination with a Brewster plate.

The sub-setup left from the laser fiber output is used for the vertical optical dipole trap
(VODT). In the sub-setup, we currently use a 3:1 telescope composed of a 100 mm lens
(Thorlabs, LA4380-YAG-ML) and a 30 mm lens (Optosigma, HFTLSQ-20-30PF1 ) that
collimates the beam from w0 = 1.41 mm → 0.79 mm at the AOM (Gooch & Housego,
AOMO 3080-198 ), used for intensity control. The beam is then fiber coupled to a
polarization maintaining, single mode 1064 nm fiber (Thorlabs, P3-1064PM-FC-5 ). We
plan to subsequently extend the beam to w0 = 4.4 mm and focus it onto the atoms by a
750 mm lens. This procedure would give us a waist of wver = 58µm for the VODT.

The rest of the setup is used for the horizontal optical dipole trap (HODT). The beam is
collimated at the position of the AOD having a waist w0 = 0.47 mm. To benchmark the
scanning system, an optional test point after the AOD consisting of a mirror and a lens
of focal length f = 100 mm at a distance f from the AOD can be set up. The angular
movement of the AOD is reproduced at the vertical breadboard (see Fig.A.2a) by a 4f
system consisting of two 500 mm lenses.

This vertical breadboard is the second part of the complete optical setup, shown in
Fig.A.2a.
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Global
attenuators

Beam dump

HODT 
attenuator

4f system VODT 
attenuator

VODT fiber
input

Figure A.1 | Complete optical setup part 1. Beams relevant for operation are shown in red,
beams not relevant for operation are marked in light red. After the fiber output, the laser is
attenuated and split into the HODT and VODT part. The sub-setup left from the laser fiber
output is used for the vertical optical dipole trap (VODT). The rest of the setup is used for the
horizontal optical dipole trap (HODT). To benchmark the scanning system, an optional test
point after the AOD consisting of a mirror and a lens can be set up. The angular movement of
the AOD is reproduced at the vertical breadboard (see Fig.A.2a) by a 4f system. The red dots
indicate the starting point of Fig. A.2a. The distances and angles are not to scale.
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(a)
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Telescope
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Transport
tunable lens
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Figure A.2 | Complete optical setup part 2. Continuing from the red dots of Fig.A.1. (a) The
different tunable lenses are marked in blue. The HODT beam is first sent through two of the
tunable lenses in a telescope configuration. Subsequently the beam is magnified by a 1:4 telescope.
Large mirrors with handles mark picomotor operated 2"mirrors. Finally, the beam passes another
tunable lens and is focused by a 150 mm final lens onto the atoms. The VODT beam is planned to
be focused down by a 750 mm lens onto the atoms. (b) Drawing of the vertical setup in Autodesk
Inventor.

After the 4f system, the HODT beam is first sent through two of the tunable lenses in a
telescope configuration. Subsequently the beam is magnified by a 1:4 telescope consisting
of a 20 mm and 80 mm lens. The beam is aligned using 2"mirrors with picomotors
(Newport, 8302 Picomotor Actuator). Finally, the beam passes the tunable lens used for
transport (Optotune, EL-16-40-TC, custom) and is focused by a final lens of focal length
150 mm onto the atoms.
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B

Measuring relative intensity
noise (RIN)

The following part is a manual for measuring the relative intensity noise of a laser.

To measure relative intensity noise (RIN), your setup will consist of a laser, a photodiode
with at least one DC output (PD), a voltmeter (VM), the FFT machine (FFT) and the
spectrum analyzer (SA).

Components

• Laser: For the measurement, the laser has to be attenuated with beam samplers,
filters etc., to not damage the used photodiode, and still remaining in the linear
region of the photodiode (both usually indicated in the data sheet of the photodiode
model).

• Photodiode: Be sure to choose a model that is specified for your wavelength, power
etc., and put in appropriate gain resistors, as well as filter capacitors. To differentiate
between noise/oscillations of the photodiode and the laser, you should know the
spectrum of your photodiode.

• True-RMS Voltmeter: Use one of the voltmeters to measure the carrier power.

• FFT machine: Set the FFT machine up via Ethernet using the sr760.py in the
srlab hardware folder. Choose a frequency range up to 100 kHz. Set the units to
dBVrms/

√
Hz.
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• Spectrum Analyzer: To get your data from the spectrum analyzer, prepare a USB
stick and make sure to use the anritsu.py in the srlab hardware folder. Set the
spectrum analyzer to RMS measurement method and to the frequency range you
want to cover. Be sure to use an input attenuator.

Measurement

When you set up the components individually, we can start putting everything together.

• Pdc with voltmeter: Connect one DC output of the photodiode to a voltmeter. Note
the RMS value of the voltage displayed on the voltmeter.

• Spectrum from mHz to 100 kHz with FFT machine: Now connect the same DC
output to the FFT machine’s input. Adjust the reference level such that you make
use the whole range of the screen. Get your data and note the RBW.

• Spectrum from 9 kHz to 7.1 GHz with Spectrum analyzer : Now connect the same
DC output to the spectrum analyzer. In general, it makes sense to run the spectrum
analyzer one time with very small RBW to see which frequency regions show peaks
and should be investigated. If you know where you want to look, define your new
frequency range and set the resolution bandwidth (RBW) such that you are able to
identify all relevant features in this region. Save your data to a USB stick and note
the RBW used for every measurement.

Analysis

Every measurement device mentioned beforehand will give you its data in a different unit.
The following sections describe how to convert these units to the ones you want for RIN
measurements. This unit is dBc/Hz. It renders your RIN measurement independent of
the laser power and RBW you used. Thus, it simplifies the comparison with other RIN
measurements.

• Voltmeter: The voltmeter gives you a rms voltage UVM, which you can use to
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calculate the carrier power of your laser light:

Pdc = U2
VM/ZVM

using its input impedance ZVM = 10MΩ.

• FFT machine: Your measured data is in dBVrms/
√
Hz, taken by the FFT machine

with certain RBW. First, convert it to

data(dBVrms) = data(dBVrms/
√
Hz) + 20log(

√
RBW/Hz)

To convert this to rms voltage:

data(Vrms) = 10dBVrms/20

Since the FFT machine’s input impedance ZFFT = 1 MΩ is much greater than the
output impedance of the photodiode ZPD = 50Ω, we can safely assume that the
measured voltage at the FFT machine is equal to the voltage at the photodiode
with negligible error. Now you can calculate the power present at the FFT machine
using

PFFT = data(Vrms)2/ZFFT

and then normalize it to your carrier power measured at the voltmeter

data(dBc) = 10log10(PFFT/Pdc)

To normalize your data to 1 Hz and rendering it independent of the used RBW:

data(dBc/Hz) = data(dBc) − 10log10(RBW/Hz)

• Spectrum analyzer: Your measured data is in dBm, taken by the spectrum analyzer
with certain RBW. First, get rid of your input attenuator by

data(dBm) = rawdata(dBm) + attenuator(dB)

The input impedance of the spectrum analyzer ZSA = 50Ω in combination with
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ZPD = 50Ω creates a 1 ∶ 2 voltage divider. Your carrier power is thus

Pdc =
(UVM/2)2
ZSA

Now you calculate the power present at the spectrum analyzer using

PSA = 1 mW ⋅ 10
dBm
10

After that, convert your data again to dBc and subsequently dBc/Hz as described
in the preceding paragraph.

Finally, just stack your different graphs now all in dBc/Hz together.
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C

AOM/AOD Driver
Characterization

This part of the appendix is a summary of the calibration curves of the used AOM and
AOD driver.

We measured the output power of both driver modules Pdriver as a function of the input
voltage AM at the amplitude modulation input. We then fit the data with a polynomial
of 3rd order Pdriver

W = ∑3
i0 ai(

AM
V ). Also, we measured the output acoustic frequency of the

driver modules determined by the built-in VCO as a function of the input voltage FM at
the frequency modulation input. The data is fitted with a linear function F

MHz = y0+k ⋅
FM
V .

The results are shown in Fig. C.1a, Fig. C.1b, Fig. C.2a, and Fig. C.2b.

We first look at the AOM Driver module. There, we obtain for the fitted AM curve the
coefficients a0 = 0.02± 0.01, a1 = −0.07± 0.01, a2 = 0.16± 0.01 and a3 = −0.012± 0.001. For
the FM curve, we obtain the parameters y0 = 64.3 ± 0.3 and k = 8.4 ± 0.1.

Now, we analyze the AOD Driver module. There, we obtain for the fitted AM curve very
similar coefficients a0 = 0.02±0.01, a1 = −0.08±0.02, a2 = 0.17±0.01 and a3 = −0.013±0.001

For the FM curve, we obtain the parameters y0 = 65.7 ± 0.3 and k = 5.6 ± 0.1.
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Figure C.1 | Characterization of the AOM driver module. (a) The output power of the driver
module Pdriver was measured as a function of the input voltage AM at the amplitude modulation
input. The data is fitted with a polynomial of 3rd order Pdriver

W = ∑3
i0 ai(

AM
V ) where a0 = 0.02±0.01,

a1 = −0.07 ± 0.01, a2 = 0.16 ± 0.01 and a3 = −0.012 ± 0.001 (solid line). (b) The output acoustic
frequency of the driver module determined by the built-in VCO was measured as a function of
the input voltage FM at the frequency modulation input. The data is fitted with a linear function
F

MHz = y0 + k ⋅
FM
V where y0 = 64.3 ± 0.3 and k = 8.4 ± 0.1 (solid line).
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Figure C.2 | Characterization of the AOD driver module. (a) The output power of the driver
module Pdriver was measured as a function of the input voltage AM at the amplitude modulation
input. The data is fitted with a polynomial of 3rd order Pdriver

W = ∑3
i0 ai(

AM
V ) where a0 = 0.02±0.01,

a1 = −0.08 ± 0.02, a2 = 0.17 ± 0.01 and a3 = −0.013 ± 0.001 (solid line). (b) The output acoustic
frequency of the driver module determined by the built-in VCO was measured as a function of
the input voltage FM at the frequency modulation input. The data is fitted with a linear function
F

MHz = y0 + k ⋅
FM
V where y0 = 65.7 ± 0.3 and k = 5.6 ± 0.1 (solid line).
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