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Abstract

In this thesis, I report on a project to frequency-stabilize diode lasers to an ultrastable
frequency reference. This reference system is a high finesse Fabry-Pérot resonator em-
bedded in a vacuum housing that provides < 1 mK temperature stability and isolates the
resonator from vibrations. With multiple techniques, we measured the resonators finesse
be ∼ 270 000 at 689 nm. We present a compact optical setup that allows locking two diode
lasers with wavelengths 689 nm and 698 nm to the same ultrastable frequency reference.
In addition, we present a custom diode laser system operating at 633 nm and provide a
complete set of instructions that allows building a similar laser for a variety of wavelengths
of interest. This work was done in the strontium laboratory in Immanuel Blochs group at
MPQ under the supervision of Dr. Sebastian Blatt.
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Chapter 1

Introduction

Cooling atoms to quantum degeneracy has opened a new field of physics. Ultracold atoms
offer a unique platform for studying quantum many-body effects with a high degree of
controllability. Nowadays it is possible to load cold atoms into artificial lattices to imitate
solid state crystals [1]. The hope is to exploit the universality of quantum mechanics by
mapping the properties of a hardly controllable system onto a controllable system. By
letting our controllable system evolve we simulate the system which we are interested in,
as originally proposed by Feynman [2]. The lattices are created by counter propagating
laser beams that form a standing wave. The standing waves create a periodic pattern of
potential wells that can capture atoms. In contrast to crystal lattices, lattices composed
of light are highly controllable. The light frequency determines the lattice constant and
the intensity sets the potential depth.

Alkaline-earth-metals stored in optical lattices offer a wide range of new applications.
The two valence electrons result in a rich electronic level structure. Depending on the
individual spins of the valence electrons, they form either a singlet (anti parallel spins)
or a triplet (parallel spins) state. In fermionic isotopes, the nuclear spin has a non-zero
value (I 6= 0). Mixing the nuclear spin with the 3P0 results in a very narrow transition.
This “clock transition” connects the ground 1S0 state to the long-lived triplet 3P0 state,
with both having an electronic angular momentum J = 0. This combination is the rea-
son for several proposals, including for instance quantum computation schemes [3, 4] and
simulating models with SU(N) symmetry [5], where N can be as large as 10.

In our experiment, we aim to perform many-body physics with the alkaline-earth metal
Strontium. Strontium (Sr) is a great choice for such experiments. In the past years, Sr has
been extensively studied in optical lattice clocks [6] and Sr bosonic and fermionic isotopes
have been cooled to quantum degeneracy [7]. The knowledge to cool Sr is readily available.
A part of the Sr energy level diagram is depicted in Figure 1. Currently we can catch the
Sr atoms in a magneto optical trap (MOT) using the broad 461 nm transition from singlet
state 5s2 1S0 to singlet state 5s5p 1P1. Reference [8] explains the details of how a MOT
works. The next step is to load the atoms into the red MOT, cooling the atoms down to
a temperature of ≈1 µK [9]. The red MOT exploits the narrow singlet 5s2 1S0 to triplet
5s5p 3P1 transition.
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Figure 1.1: Energy level structure of Strontium. Marked are the electronic transitions
which are used for cooling Sr and the narrow clock transition.

For the red MOT we need a laser with a linewidth narrower than the 7.5 kHz, which is
the linewidth of the transition. To achieve this narrow linewidth with a diode laser, one
has to lock the laser to a frequency reference. The same is true for the clock transition,
although it is far narrower. This thesis reports on the construction of an ultrastable
frequency reference. The frequency reference is used to narrow down the linewidths of the
clock laser at 698 nm. Later, it should address the clock transition of 87Sr. Simultaneously,
we lock the red laser at 689 nm to the same reference cavity, which is used to create the
red MOT.

1.1 Outlook

In this thesis, I report on my work done in the Ultracold Strontium Experiment at the
Max-Planck-Institute for Quantum Optics. My main topic was stabilizing two diode lasers
to an ultrastable frequency reference. While working on the laser stabilization project, I
also built an external cavity diode laser.

Chapter 2 examines the theory of optical resonators and laser beams. A good under-
standing of the concepts is essential for this thesis. After this section, we have a first look
at measurements that were performed to characterize an optical resonator.

In Chapter 3, we first concentrate on control theory and discuss how we can stabilize a
physical quantity to a certain value. Using the Pound-Drever-Hall locking scheme, we can
reference the laser frequency to an optical resonator and use a feedback loop to stabilize
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the laser frequency.
In Chapter 4, we analyze our stable reference system. After talking about the reasons

for perturbations and the design of the cavity, we carefully discuss each step of assembling
the cavity. At last, we discuss about the isolation of the ultrastable cavity housing against
temperature fluctuations.

In Chapter 5 we finally lock the laser to the stable reference cavity. This chapter
discusses every optical element in the setup as well as the precise locking procedure. After
the laser is locked we will make a rough estimate of the linewidth and see how good our
system performs.

Chapter 6 reports on an external cavity diode laser (ECDL) that I built. We will have a
look at the design, how it was built and the optical setup of the laser system. This chapter
also intends to provide a guideline on how to choose the parts to construct the laser for a
certain wavelength.
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Chapter 2

Resonators

In this chapter we introduce the basic concepts of laser beams and optical resonators as
they are of fundamental importance in laser physics. Many good books and reviews can
be found on this topic, see for example Ref. [10] or Ref. [11]. In its simplest form an
optical resonator consists of two mirrors facing each other (see Figure 2.1). This resonator
configuration is known as a Fabry-Pérot cavity and has many different applications in,
for instance, interferometry and spectroscopy. In this thesis a Fabry-Pérot cavity is used
as a frequency reference for laser stabilization, but to be able to understand how the
stabilization scheme works we have to look up the relevant optical concepts. A good
starting point is to discuss how light can be treated mathematically and be described in a
physical way. This formalism will serve as basis to study important resonator properties
and how these properties can be measured experimentally.

2.1 Light propagation

How does light propagate from one point P1 to another point P2? Today we know that
visible light is characterized by oscillations of the electromagnetic field with a frequency ν
in the range of 430-750 THz. These frequencies corresponds to wavelengths λ in the range
of 400-700 nm. These wavelengths are so small that for most of the day-to-day observations
of how light behaves a very good approximation is letting λ→ 0. Remembering Fermat’s
principle that light travels from P1 to P2 along the path that connects those points with the
shortest optical length within a certain vicinity (see Ref. [12, pp. 136-139]). This shortest
path is called a light ray. From Fermat’s principle follows the reflection law, which states
that the angle of incidence is equal to the angle of reflection with respect to the surface
normal. Moreover, we can derive Snell’s law of refraction, which governs how a light ray is
refracted at an interface between two media with index of refraction n1 and n2, respectively.
We find (for a derivation see Ref. [13, p. 182-183]) that the angles θ1 and θ2 are related by

n1 sin θ1 = n2 sin θ2, (2.1)

which becomes
n1θ1 = n2θ2 (2.2)
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Figure 2.1: This figure illustrates a Fabry-Pérot Resonator, consisting of two mirrors with
radius of curvature R1 and R2, respectively. We also indicate the position of the beam
waist w0.

for θ1,2 � 1, which is known as the paraxial approximation. This formalism for optics is
called geometrical optics because the propagation path of light is calculated with the laws
of geometry.

2.2 ABCD transfer matrix

In geometrical optics the propagation of a ray of light within the plane of incidence is fully
described by a set of two parameters at a position z1 on the optical axis. These parameters
are the radial distance to the optical axis x1 and its slope with respect to the optical axis
x′1. To determine the beam’s properties after it has passed through an optical system, at
position z2 one applies a linear transformation of the following form:(

x2

x′2

)
=

(
A B
C D

)(
x1

x′1

)
. (2.3)

This transformation is also depicted in Figure 2.2. The ABCD-matrix that corresponds to
an optical element can be calculated using only Snell’s law of diffraction together with the
paraxial approximation. Table 2.1 lists some of the most commonly used transfer matrices.
The first column describes a ray traveling an axial distance d in an optical medium with
homogenous index of refraction n. The second column is used for a thin lens. If this matrix
is applied to a given state, we obtain the state of the beam immediately after the lens.
The last ABCD matrix is used for a curved surface; the radius of curvature R is positive
if the center of curvature is on the same side from which the beam is approaching and n1

(n2) is the index of refraction of the material before (after) the curved surface. The ABCD
matrix of a flat interface can be obtained by taking the limit R → ∞. Transfer matrices
of more complex optical systems can be calculated by matrix multiplication of the transfer
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Figure 2.2: Propagation of a ray of light (red) and how it is transformed while passing
through an optical system (gray box).

matrices of the individual optical elements.

2.3 Stability of a resonator

In an ideal stable resonator with perfect mirrors a light ray would bounce back and forth
forever. In other words, stability means that for a resonator there exist x1 and x′1, such
that applying the ABCD matrix of the resonator an arbitrary amount of times n does not
lead to diverging values of xn and x′n.

Having in mind a Fabry-Pérot resonator as in Figure 2.1, we can find the properties
of a stable resonator by replacing the mirrors by a periodic sequence of two lenses which
have the same focusing power as the mirrors (fMirror = R/2). Then the ABCD matrix for
one full round trip can be written as

(
A B
C D

)
=

(
1 0
− 2
R1

1

)(
1 d
0 1

)(
1 0
− 2
R2

1

)(
1 d
0 1

)
, (2.4)

assuming that the material between the mirrors has a refractive index of 1. To write the
following equations in a nicer form, one usually defines the two parameters

Distance d Thin lens Curved surface(
A B
C D

) (
1 d/n
0 1

) (
1 0
−1/f 1

) (
1 0

− (n1−n2)
n2R

n1/n2

)
Table 2.1: A list of some of the most commonly used transfer matrices, describing prop-
agation in free space over distance d, the focusing of a thin lens with focal length f , and
the refraction at a curved interface (radius R) of two media with refractive indices n1 and
n2, respectively.
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g1 = 1− d

R1

(2.5)

g2 = 1− d

R2

, (2.6)

such that Eqn. (2.4) can be rewritten as(
A B
C D

)
=

(
2g2 − 1 2g2d

2
d
(2g1g2 − g1 − g2) 4g1g2 − 2g2 − 1

)
. (2.7)

To see how a ray of light behaves when the transformation of Eqn. (2.7) is applied n
times, we can use Sylvester’s matrix theorem [14]:(

A B
C D

)n
=

1

sin θ

(
A sinnθ − sin(n− 1)θ B sinnθ

C sinnθ D sinnθ − sin(n− 1)θ

)
, (2.8)

with

cos θ =
1

2
(A+D). (2.9)

Equation (2.9) leads to the stability criterion |A+D| ≤ 2. We see that if the stability
criterion holds, θ is real and the individual elements of the transfer matrix are oscillating
functions of n and therefore take the same values over and over again. One can imagine
that a ray inside a stable cavity is periodically refocused. In case this inequality does
not hold, θ becomes imaginary and the transfer matrix consists of hyperbolic functions.
Hyperbolic functions diverge for large arguments and so does the distance to the optical
axis of a light ray entering this unstable cavity. At one point the diameter of the mirrors
will not be large enough and the ray escapes from the cavity.
Using the definitions in Eqns. (2.5) and (2.6), the stability criterion for a resonator can be
expressed as

0 ≤ g1g2 ≤ 1. (2.10)

In Figure 2.3 this stability criterion is plotted and the result is called a stability diagram,
illustrating the regions of stability and instability. For instance it becomes clear that not
any cavity near the confocal (R1 = R2 = d) configuration is stable.

2.4 Gaussian beams

The simple analysis in the previous section already gave some useful insights, and for many
optical problems a treatment with geometrical optics is fully sufficient. Geometrical optics
only break down when the finiteness of the wavelength becomes important. An everyday
example are the colorful rings in puddles that form on a rainy day out in the streets when
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Figure 2.3: Stability diagram for optical resonators. Resonator configurations that do not
fulfill the stability criterion lie in the shaded areas. Taken from Ref. [11].

a droplet of oil forms a thin film on top of the water. These colorful patterns cannot be
explained with geometrical optics. Adding the wavelength of light to our formalism, this
phenomenon can easily be understood: the oil film thickness on the water varies and for
certain wavelengths the reflection from the air-oil interface interferes constructively with
the reflection from the oil-water interface.

To understand resonators better and to develop a formalism for laser light, one also
has to go a step further from geometrical optics and take into account the wavelength of
light. The result is known as Gaussian optics, which can be derived from the full Maxwell’s
equations. In this section we will follow the analysis of Ref. [11] to see how the wave nature
of laser light can be treated mathematically.

Assuming a field free of charges and currents, we can use Maxwell’s equations to show
that the electric or magnetic field in a homogeneous and isotropic material fulfills (for a
full derivation see Ref. [12, p. 11])

∇2u− 1

c2
ü = 0, (2.11)

where c is the speed of light and u may stand for either the electric or the magnetic field
vector. The dot indicates differentiation with respect to time. Equation (2.11) is known
as the wave equation and is the basis for treating light as electromagnetic waves. We
are especially interested in the electric field of monochromatic laser light with a single
frequency ω = 2πν, so it is reasonable to assume a time-dependence of the form eiωt and
arrive at the scalar wave equation for any of the Cartesian electric field components u:

∇2u+ k2u = 0. (2.12)
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Here k = 2π/λ is called the wave vector. If we define the z-axis along the axis of beam
propagation, a simple solution to (2.12) are plane waves, i.e. u = u0 exp(−ikz). This
solution suggests a beam with a plane phase front that expands infinitely in the x and y
directions. To obtain a spatially limited beam we make an Ansatz that is still similar to
a plane wave, but also includes a slowly varying complex function ψ(x, y, z) that depends
on the Cartesian coordinates:

u = ψ(x, y, z) exp(−ikz). (2.13)

Now we will try to find solutions for ψ(x, y, z) such that u represents the electric field of a
laser beam. We again use the paraxial approximation, and require that the angle between
the direction of propagation and the optical axis is small. As a consequence, when inserting
Eqn. (2.13) into Eqn. (2.12), we neglect the second derivative with respect to z. We obtain
the paraxial wave equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
− 2ik

∂ψ

∂z
= 0, (2.14)

which can be solved by

ψ = exp

{
−i
(
P +

k

2q
r2

)}
. (2.15)

Here r2 = x2 + y2 is the radial distance to the z-axis. In Eqn. (2.15), two new parameters
emerge: the complex beam parameter q is responsible for the radial limitation of the field
distribution and a curvature in the phase front. The other parameter P is responsible
for the so-called Gouy phase, which we will discuss later. At the moment these two new
parameters might appear hard to interpret, but their physical meaning will soon become
clear. To find an expression for these two new parameters one simply plugs Eqn. (2.15)
into Eqn. (2.14) and by comparing terms of equal power in r we find:

∂q

∂z
= 1 (2.16)

and

∂P

∂z
= − i

q
. (2.17)

Complex numbers are not very intuitive which is why it is better to write q as a function
of two real beam parameters w(z) and R(z):

1

q
=

1

R
− i λ

πw2
. (2.18)
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In the beginning this choice seems arbitrary, but it helps to evaluate the complex beam
parameter q. The expression for the electric field we have derived now becomes

u = exp

{
−i
(
P (z) + kz +

kr2

2R

)
− r2

w2

}
, (2.19)

which can be interpreted clearly: The real part in the exponential of Eqn. (2.19) creates
an envelope along the radial distance to the optical axis which has a Gaussian form. The
parameter w is the radial distance at which the field amplitude of the beam decreases to
1/e of its peak at r = 0. Therefore w is often referred to as the beam radius. Also the
meaning of the parameter R becomes clear: it is the radius of curvature of the phase front.

To summarize these results: with equation (2.19) we have found a solution to the wave
equation that governs the electromagnetic field. To obtain a realistic description of laser
beams, we began with plane waves and confined them to a finite extent. The result was
a beam that has a Gaussian field profile and a curved phase front. It should be stressed
that this solution is only valid for paraxial beams that do not diverge too fast, otherwise
our approximation that the field varies only slowly in the z-direction in Eqn. (2.14) breaks
down. The complex beam parameter q contains all the geometrical information of the
beam and can be used to calculate the beam radius w and the radius of curvature of the
phase front R.

The beam radius has a minimum called the beam waist w0 and one usually defines the
position where the beam waist occurs to be as z = 0. When the beam radius contracts to
a minimum, the radius of curvature of the laser beam diverges and q becomes completely
imaginary:

q0 = i
πw2

0

λ
. (2.20)

Another useful quantity to describe a Gaussian beam is the Rayleigh range, which is the
distance on the optical axis between the position of the beam waist and the position where
the beam radius expands to

√
2w0:

zR =
πw2

0

λ
. (2.21)

With Equations (2.18), (2.20) and the definition of the Rayleigh range, the beam radius
and the phase front curvature at any arbitrary position z can be related to the beam waist.
We obtain the two relations

w(z)2 = w2
0

[
1 +

(
z

zR

)2
]

, (2.22)

R(z) = z

[
1 +

(zR
z

)2
]

. (2.23)
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Integrating (2.16) yields

q2 = q1 + z, (2.24)

which connects two different q-parameters of a beam at two different positions, separated
by a distance z. Equation (2.24) can now be used to write down an expression for q, which
depends only on the distance to the beam waist and the beam waist itself:

q = q0 + z = i
πw2

0

λ
+ z. (2.25)

Having found this equation for q we can finally solve equation (2.17) to find the complex
phase shift P :

∂P

∂z
= − i

q
= − i

z + i
πw2

0

λ

. (2.26)

Integration from the position of the beam waist (z = 0) gives

iP = ln

√
1 +

(
λz

πw2
0

)2

− i tan−1

(
λz

πw2
0

)
, (2.27)

which is straightforward to interpret: the real part of iP in Eqn. (2.27) introduces the
expected decrease in field amplitude, as the Gaussian beam is expanding from the beam
waist. The imaginary part adds an additional phase, which is called the Gouy phase. The
fundamental Gaussian beam can therefore be written as

u(r, z) =
w0

w
exp

[
−i(kz − Φ)− r2

(
1

w2
+
ik

2R

)]
, (2.28)

with the Gouy phase

Φ = tan−1

(
λz

πw2
0

)
. (2.29)

Until now only one possible solution to Eqn. (2.14) was discussed, which resulted in a
Gaussian intensity shape along the x and y axis. Although this solution is a very important,
the Gaussian beam is by far not the only one. Indeed, there exists a whole set of solutions
which form a complete and orthogonal set of functions. In Cartesian coordinates these
solutions can be written as [11]

u(x, y, z) =
w0

w
Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
exp

[
−i(kz − Φ(n,m; z))− i k

2q
(x+ y)2

]
, (2.30)

where Hm,n are the Hermite polynomials and Φ(n,m; z) is again the Gouy phase, but this
time in its general form which depends on the transverse mode numbers n and m:

Φ = (m+ n+ 1) tan−1

(
λz

πw2
0

)
. (2.31)
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Figure 2.4: This figure shows a few of the lowest TEM modes.

The solutions in Eqn. (2.30) are called transverse electromagnetic (TEMnm) modes and
the two numbers n and m indicate which mode is meant. For instance, the lowest order
TEM00 mode corresponds to the Gaussian shaped beam which was discussed previously.
Figure 2.4 shows several examples of TEM modes.

2.5 Resonant beams and frequencies of a plano-concave

resonator

Relation (2.24) connects two q-parameters which are separated by a certain axial distance.
This relation already indicates that there is a possibility to obtain the q-parameter of a
laser beam after it has passed through an optical system. And indeed, if one knows the
ABCD-transfer matrix of the system, the q-Parameter q1 immediately before the system
and the q-parameter q2 immediately after the system are connected by

q2 =
Aq1 +B

Cq1 +D
, (2.32)

which is known as the ABCD law. Here, we only motivate Eqn. (2.32) by noting that
the ABCD law leads to Eqn. (2.24) when applying the ABCD matrix of free space. See
Ref. [15, pp. 93-94] for a full proof via induction.

We can apply this rule to calculate some properties of a laser beam resonant with an
arbitrary stable cavity. We enforce the condition that the q-parameter replicates after a
full round trip

q =
Aq +B

Cq +D
(2.33)
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together with the ABCD-matrix of a resonator in Eqn. (2.4). Solving this equation yields
the q-parameter of the laser beam after being reflected from the first mirror:

1

q
=
g1 − 1

d
± 1

g2d

√
g1g2 (g1g2 − 1). (2.34)

Using Eqn. (2.18), we find that the wavefront radius at this point is equal to −R1 and
thus matches the mirror shape. Particularly interesting here is the case of a plano-concave
resonator: choosing R1 =∞ (g1 = 1) lets the real part of Eqn. (2.34) vanish, which means
that the beam waist of this resonator type is located at the plane mirror. The beam waist
becomes

w2
0 =

λ

π

√
d(R2 − d). (2.35)

The resonator used in this work has exactly this shape and this equation will be very useful
later on when we want to couple as much light as possible from the laser into the resonant
mode, because we have to “shape” the incident laser beam into the correct form.

To find these relations the only condition we enforced was that the q-parameter of
the beam has to replicate after a full round trip. To determine the resonant frequencies,
we have to require that the phase which the beam accumulates in a full round trip is a
multiple of 2π. Recasting equations (2.30) and (2.31) we can write this condition for the
plano-concave resonator as:

2πl = 2kd− 2(n+m+ 1) tan−1

(
d

zR

)
, (2.36)

where l this time is an integer number. The two contributions to the phase are the phase
a plane wave accumulates when traversing a distance 2d plus the Gouy phase for the same
distance. Using equations (2.6), (2.21), (2.35) and the trigonometric identity

tan−1(x) = cos−1

(
1√

1 + x2

)
, (2.37)

we can rewrite the resonance condition in Eqn. (2.36) to obtain an expression for the
actual frequencies which are resonant with the plano-concave resonator:

νnml =
knmlc

2π
=

c

2d

(
l +

1

π
(n+m+ 1) cos−1(

√
g2)

)
. (2.38)

Note that the parameter g2 can become zero for a plane-plane resonator configuration
and negative for a plano-convex cavity. The latter case would not yield any resonant
frequencies, because this resonator configuration is unstable as one can easily imagine and
verify by looking at the stability diagram in Figure 2.3. For other resonator geometries a
more general approach is given in Ref. [11].
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The frequency difference between two longitudinal modes (n = m = 0) is called the
free spectral range (FSR), which is a characteristic number for every cavity that depends
only on the cavity length:

FSR =
c

2d
. (2.39)

2.6 Light fields in optical resonators

Until now we have only discussed the geometry of cavities and the resulting shape of the
beam which is on resonance. Now we should draw our attention towards the light fields
themselves and discuss for instance how strong it is and how many round trips it undergoes
inside the cavity. Imagining a cavity as depicted in Figure 2.1 with an incident light
field Einc, one approach to find the reflected light field is to simply sum up its different
contributions. These contributions are the light field reflected immediately at the first
mirror without entering the cavity, the one doing one round trip and afterward leaves the
cavity, the one doing two round trips and so forth:

Eref = −Eincr + Einct
2re−iφ + Einct

2r3e−2iφ + . . .

= −Eincr + Einc
t2

r

∑
k=1

(
r2e−iφ

)k
= Einc

re−iφ − r
1− r2e−iφ

, (2.40)

where r and t are the field reflection and transmission coefficients of the mirrors. The
parameter φ = 2π ν

FSR
is the phase shift accumulated in one round trip for light of frequency

ν, considering only TEM00 modes. The first minus sign comes from the π phase shift due
to the reflection on the back side of the first mirror (see Ref. [10, pp. 35-36] for a derivation
of the phase shift). In the last step we used the well known geometric series and assumed
lossless mirrors, so that |r|2 + |t|2 = 1. With the same method similar expressions can be
found for the light field inside the cavity

Ecav = Einc
t

1− r2e−iφ
(2.41)

and the transmitted light field

Etrans = Einc
t2e−

1
2
iφ

1− r2e−iφ
. (2.42)

The corresponding light intensities can easily be found by the relation

I

Iinc

=

∣∣∣∣ EEinc

∣∣∣∣2 , (2.43)
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Figure 2.5: Transmitted light intensity of a Fabry-Pérot resonator as a function of the
phase accumulated during one round trip. We also indicate the FWHM and the FSR.

which for the transmitted light intensity gives

Itrans = Iinc
t4

1− 2r2 cos
(
2π ν

FSR

)
+ r4

. (2.44)

Here we have replaced φ by 2π ν
FSR

to show the frequency dependence explicitly. Figure
2.6 shows a plot of Eqn. (2.44).

When ν fulfills the resonance condition of being a multiple of the FSR, the transmitted
intensity has a maximum. In our model the broadness of the peaks depends solely on the
reflectivity of the mirrors. After some algebra we find that the half maximum occurs at

ν1/2 =
FSR

2π

1− |r|2

|r|
(2.45)

away from the resonance. A number that is typically used to characterize an optical
resonator is the finesse F which is defined as the ratio between the free spectral range
(FSR) and the full width at half maximum (FWHM)

F =
FSR

FWHM
=

FSR

2ν1/2

=
π |r|

1− |r|2
=

π
√
R

1−R
≈ π

1−R
, (2.46)

where R = |r|2 is the intensity reflection coefficient of each mirror. The last approximation
is commonly used for finesse values F > 100.

Another useful quantity to describe an optical resonator is the quality factor Q, which
is a measure of the frequency resolution of an optical cavity. Using this definition we can
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write Q as

Q =
ν

FWHM
, (2.47)

with the resonant frequency ν. By using Eqns. (2.46) and (2.39) we can relate Q to F and
see that

Q =
νF
FSR

=
ν2dF
c

=
2d

λ
F . (2.48)

Here, we replaced the resonant frequency by the resonant wavelength λ = c/ν. Equation
(2.48) states that Q is equal to the finesse times the number of wavelengths during a full
round trip.

2.7 Measuring the finesse

Knowledge of the finesse of a cavity is very important, because it determines how narrow
the resonances are. As we will see later, the finesse also determines how much we can
narrow down the laser linewidth by stabilizing the laser to a high-finesse cavity

Knowing the geometry of the resonator – and therefore the FSR – one simple approach
to determine the finesse is to take a tunable laser and slowly scan its frequency over
a resonance. With a photo detector we can measure the transmitted intensity on an
oscilloscope and read off the FWHM to calculate the finesse. Unfortunately this attempt
works only for low finesse cavities, because otherwise the resonances can be far more narrow
than the laser linewidth.

To overcome this measurement problem, a better approach is to measure the photon
lifetime inside the cavity. If U is the energy stored inside a cavity, the energy loss will be
proportional to the energy U : on every reflection from one of the cavity mirrors, a fixed
fraction of the electric field (and thus the energy) is lost from the cavity. Mathematically
we can express the time dynamics with the differential equation

dU(t)

dt
= −U(t)

τ
. (2.49)

Equation (2.49) has a solution

U(t) = U0 e
−t/τ , (2.50)

where τ is called the intensity ring down time (or photon lifetime). The ring down time
τ is the characteristic time after which the stored energy has decayed to 1/e times its
original value. While traveling one cavity length d, the energy decay of the light field in
our absorption free cavity is equivalent to 1−R. Per unit time this would be c

d
(1−R) so

we can write

dU(t)

dt
= − c

d
(1−R)U(t) (2.51)
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and find

1

τ
=
c

d
(1−R). (2.52)

Using Eqn. (2.52) together with the approximation in Eqn. (2.46) we can finally connect
the finesse to the ring down time:

F =
cπτ

d
. (2.53)

Equipped with Eqn. (2.53) it is possible to obtain the finesse by a simple ring down
time measurement. To do so, a laser needs to be stabilized onto one of the resonances of
the corresponding cavity and at one point it must be switched off very rapidly. As shutting
down the laser or simply blocking the beam is not a fast enough way to do this, we used an
acousto-optic modulator (AOM). The basics of AOMs are well described in Ref. [16]. Here,
we can look at an AOM as a device that uses sound waves traveling through a crystal.
Those sound waves (phonons) form a crest that can diffract light of a laser beam. The
diffracted beam leaves the AOM in an angle and can be isolated from the undiffracted
beam. We can stabilize the diffracted beam on a cavity and shut down the AOM (and
therefore the diffracted beam) within nanoseconds. The result of such a measurement can
be seen in Figure 2.7.

This method is very straightforward and easy to evaluate, but to perform it a laser
has to be stabilized onto a cavity resonance. Stabilizing a laser onto a high finesse cavity
is usually quite time consuming, so it would be great to have a method to determine the
finesse without having to lock a laser to the cavity. An alternative approach is to scan
the laser quickly over a cavity resonance. When the ring down time of the cavity becomes
comparable to the time it takes the laser to sweep over the resonance, interference effects in
the transmitted and reflected light signal become visible. Photons that enter the cavity at
a certain time will do a round trip and then interfere with the photons entering the cavity
after this round trip, which are now shifted in frequency due to the scan. The resulting
signal might appear difficult to evaluate, but summing the different contributions up [17],
we find that the dynamics of the intracavity field are governed by a first order differential
equation

dEcav

dt′
= −(1− iν̃t′)Ecav + i

√
TF
π

Einc. (2.54)

Here, t′ = t/(2τ) is the time normalized to twice the intensity ring down time and

ν̃ =
4Fdω̇τ
πc

(2.55)

is the normalized scan rate, with the scan rate ω̇ of the laser frequency in rad/s2. Equation
(2.54) can be used to find solutions for the transmitted and reflected signal of a cavity
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Figure 2.6: A ring-down measurement of the intensity stored inside an optical cavity. The
measured data (blue line) and the fit (red line) agree perfectly and reveal a ring down time
of 30.3(1)µs. The cavity is 10 cm long cavity, so this ring down time corresponds to a
finesse of 286 000.
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Figure 2.7: Fitted reflection signal while scanning over a resonance of an optical cavity.
The fit agrees very good with the measured data and reveals a ring down time of 7.4(5)µs.
The resulting finesse is 69 000 for a 10 cm long cavity.

while scanning over a resonance. We find [18]

|Eref(t)|2 = |Einc|
∣∣∣∣1− β

ν̃

[√
π

2i
e−t

′+iν̃t′2/2−i/(2ν̃) +
√

2iD

(
i+ t′ν̃√

2iν̃

)]∣∣∣∣2 (2.56)

and

|Etrans(t)|2 =
β2 |Einc|

ν̃

∣∣∣∣√π

2
e−t

′+iν̃t′2/2−i/(2ν̃) + i
√

2D

(
i+ t′ν̃√

2iν̃

)∣∣∣∣2 , (2.57)

where β = T/(1 − R) is the cavity contrast parameter and D(x) is the Dawson integral.
Equations (2.56) and (2.57) can be fitted to a measurement. Figure 2.7 shows such a
measurement and the result of a fit. To fit such a highly non linear equation might seem to
be challenging, but closer examination reveals that the exponential decay of the function
depends only on the ring down time τ and the oscillation frequency of the intensity depends
only on the scan rate ω̇. The measured amplitude depends on the photo detector gain and
the laser power and therefore it is enough to determine it once and use the same value also
for further measurements. With τ and Eqn. (2.53) it is possible to determine the finesse.

Measuring the finesse accurately can be very important to determine the performance of
an optical resonator. In our case it was the first indication that the mirrors of our resonator
were contaminated, because we measured a finesse of only 69 000 (Fig. 2.7) although the
supplier specified more than 200 000. After the mirrors were replaced we measured a
linewidth of 286 000 (Fig. 2.7), which was sufficient to proceed with the experiment.



Chapter 3

Laser stabilization

By laser stabilization we mean the process of stabilizing the laser light frequency. Lasers
are a monochromatic source of coherent light, but looking more closely we will see that
being monochromatic is only partially true. In practice frequency fluctuations lead the
laser to emit a range of frequencies around their central frequency, which motivates the
introduction of the linewidth of a laser. The linewidth can be obtained by measuring the
instantaneous laser frequency over a certain time interval ∆t, plotting a histogram and
calling its FWHM the linewidth. This definition of the linewidth might cause confusion,
because how much the emitted frequency can change depends on ∆t making the measured
linewidth a function of ∆t. Therefore it is worthwhile to clarify the terminology before
beginning, and here I will follow the definitions given in Ref. [19]:

• The fast linewidth (or simply linewidth) corresponds to a ∆t of 10−5-10−4 s, which
is less than typical spectroscopic interaction times. Therefore the fast linewidth sets
a limit on the smallest feature the laser can still resolve.

• Lower frequency fluctuations can cause the fast linewidth to jitter along the frequency
axis. Jitter can be caused for example by vibrations that typically lie in the kHz
region.

• Even slower changes of large amplitude can be caused for instance by temperature
fluctuations. One says that the frequency of the laser “drifts”.

Bearing these definitions in mind, we can already conclude what our laser stabilization
scheme should be capable of achieving: we want it to prevent our laser from drifting
over time and it should reduce frequency fluctuations to narrow down the linewidth of
the laser. Furthermore it should be very stable against vibrations that could be present
on the optical table where the laser is located. To achieve this performance we have to
cover a large frequency range. To learn how we can achieve this stabilization we will first
have a look at feedback and control theory, which tells us how a physical quantity can be
stabilized to a certain value. For stabilization we need to measure deviations from this
value very precisely. For laser frequency stabilization, the so called Pound-Drever-Hall
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(PDH) scheme provides this precision, by comparing the laser frequency to a resonance of
an optical resonator used as a frequency reference.

3.1 Feedback and control theory

Very often it happens that one wants to set a physical quantity to a certain value at which
it should remain without fluctuations. Such a quantity might be the velocity for cruise
control in a car, the temperature in a room or even the pupil radius to control the amount
of light that reaches the retina in our eyes. How to achieve this performance is the subject
of control theory.

We want to confine our attention to simple systems, which have one input parameter u
and one output parameter y. In control theory, the signal flow is often depicted by block
diagrams where each system is represented as a block. An example is shown in Figure
3.1, where a signal u(s) with complex frequency s serves as input signal for a system (gray
box). The system then transforms the input into the output y(s). We can assign a transfer
function G(s) to the system, which is the ratio between the input and the output signal:

G(s) ≡ y(s)

u(s)
. (3.1)

The definition of the transfer function in Eqn. (3.1) motivates the representation of signal
flow in block diagrams, because now the output signal y can simply be calculated by
multiplying the transfer function to the input signal. More complicated diagrams can
involve several systems with different transfer functions. The total transfer function is
then obtained by multiplying the transfer function of each single system.

Notice that the discussion up to here has taken place in the frequency domain. In control
theory it is often more practical to work with signals of fixed frequencies instead of time
dependent signals. These two representations are connected through the one-sided Laplace
transform, which is a generalization of the Fourier transform to complex frequencies s. The
Laplace transform of a function f(t) is

L[f(t)] ≡ f(s) =

∫ ∞
0

f(t)e−stdt. (3.2)

With this definition, important relations that we will use in the following are [20]:

L [dnf(t)/dtn] = snf(s) and (3.3)

L
[∫

f(t)dt

]
= f(s)/s. (3.4)

A more detailed discussion about Laplace transform and its applications in control theory
can be found in Ref. [21].

Now we will try to “control” the output y of the system G and set it to the desired
value. One approach is to measure the output signal. From this measurement we can infer
how far we are from the desired set point and use this information to apply an appropriate
input u. With this method we feed the output y back into the input u.
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y(s)u(s) G(s)

Figure 3.1: This simple block diagram illustrates an input signal u(s) to a system G and
its output signal y(s).

3.1.1 Feedback

The idea of feedback is to force an output y(t) of a system to track a set point or reference
signal r(t) as closely as possible. To understand how this tracking is accomplished, we
consider a system with transfer function G. The general approach is to measure the output
y(t) of the system and compare it to the reference signal r(t). The difference between the
measured output and the reference is called error signal

e(t) ≡ r(t)− y(t). (3.5)

Ideally, we can use the error signal together with a control system K to calculate the
appropriate input signal u(t) such that the output of G follows the reference. For a block
diagram representation of this feedback see Figure 3.2, where the derivation of the error
signal is indicated by the plus and minus sign.

From the block diagram in Figure 3.2 we can read off how the error signal relates to
the system’s output

y(s) = G(s)K(s)e(s). (3.6)

Using Eqn. (3.5) we can also find the relation between the output and the reference

y(s) =
G(s)K(s)

1 +G(s)K(s)
r(s). (3.7)

When feeding the output back into the input, one says that one closes the loop. The
factor in front or r(s) in Eqn. (3.7) is called the closed loop gain. When interrupting the
feedback loop at any point we would be left with the open loop gain G(s)K(s).

Equation (3.7) suggest that we can choose a control law K to “shape” the system
dynamics, such that the new overall transfer function

T =
G(s)K(s)

1 +G(s)K(s)
(3.8)

has the dynamics that we want. And indeed, for many systems you can find a suitable
K. In Ref. [22] John Bechoefer provides a great collection and practical examples of how
feedback can improve the systems dynamics.
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3.1.2 Examples for control laws

The probably most intuitive form of K(t) is proportional feedback. Proportional feedback
means that the error signal amplified with a constant is fed back into the controller, so
up(t) = kpe(t) where kp > 0. With the definition of the error signal in eqn. (3.5), e is
negative when the output y is above the reference r and positive as soon as it falls below
r. The proportional feedback tends to counteract disturbances and can therefore have a
stabilizing effect.

Using only the proportional gain has the disadvantage that the control signal becomes
zero as y approaches r. As a result, the input u becomes zero as well and the system will
start to drift away from the reference point. We can solve this problem by applying an
integral control, such that the input becomes

ui(t) = ki

∫ t

−∞
e(t′)dt′. (3.9)

Here ki is the integral gain. With the integral control the control signal becomes a function
of the history of the error signal and thus it provides a control signal although the error
signal is zero. Laplace transforming Eqn. (3.9) with Eqn. (3.3) we find that the integral
control law is

ui(s)

e(s)
= Ki(s) =

ki
s

. (3.10)

We see that the integral control has high gain for low frequencies which rolls of at high
frequencies. A control system with this behavior is called an integrator.

Another commonly used controller is derivative feedback. A derivative feedback con-
troller calculates the input by

ud(t) = kdė(t), (3.11)

with the derivative gain kd. The derivative control predicts the future development of e(t)
and tries to counteract disturbances before they occur. Looking at the Laplace transfrom
of Eqn. (3.11) using Eqn. (3.4)

Kd(s) = kds, (3.12)

we see that the differentiator has high gain for high frequencies an therefore rejects fast
changing signals very well. It is often used to extend the feedback bandwidth of a control
system.

A combination of this three control laws results in the famous proportional-integral-
derivative controller (PID controller). The PID controller is very common and can be
applied to various systems. In this thesis we used it for instance to control the tempera-
ture of the frequency reference in Chapter 4 and the temperature of the home-build laser
discussed in Chapter 6.

We have seen that all these ideas require a precise knowledge of the error function.
Inferring this information is not always easy. The next section will discuss how an error
signal can be obtained for controlling a laser frequency.
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K(s)r(s) y(s)
u(s)e(s)

G(s)

Figure 3.2: Block diagram representation of a feedback control loop. The error signal e is
calculated according to Eqn. (3.5), illustrated by the plus and minus sign in the comparator.
The error signal is then fed into a controller K that transforms e into an input u.

3.2 PDH locking

To stabilize the frequency of the laser light we will have to measure frequency deviations of
the laser very accurately and quickly. The frequency of visible light is in the range of several
hundred THz and with today’s electronics it is not possible to resolve the oscillations of
the electric field directly. Therefore our strategy will be to take a reference, of which we
know the frequency very precisely and “lock” our laser to this reference. As we have seen
in the preceding chapter, an optical resonator could provide us with such a reference: The
transmission signal of an optical resonator in Figure 2.6 shows that the resonator only
transmits light of certain frequencies that are close to the resonance frequency. For high
finesse resonators the resonances can be very narrow. For instance a 10 cm long resonator
with a finesse F = 280 000 has a FWHM of only 5.4 kHz and would serve as a very good
reference.

Given a laser one wants to stabilize, we could imagine to simply tune the frequency of
the laser to one of the resonances and watch the transmission signal on a photo detector
(PD). A drift in frequency of the laser is then recognized by a decreasing signal on the PD
and we could use this information to correct the frequency again.

Unfortunately in reality this very simple approach does not work for several reasons:
first the PD cannot distinguish between a varying light intensity due to frequency change
or intensity modulation of the laser itself. Even more severe is the symmetry of the trans-
mission peak of an optical resonator. By only looking at the transmission signal we can
not tell in which direction the frequency is changing. Both issues can be resolved by using
the Pound-Drever-Hall locking scheme for frequency stabilization, which will be discussed
in this section. A very good introduction to PDH locking can be found in Ref. [23].

To overcome the problem of intensity fluctuations caused by the laser, we can use the
reflected light signal instead of the transmitted light signal. At resonance, the reflection
signal is zero, independent of the incident laser power. Thus frequency and intensity
noise get decoupled. The symmetry problem remains, as the reflected light signal is also
symmetric around the resonance. To find a workaround, we have to study the reflected
light signal closer. We assign a transfer function to the cavity which relates the reflected
light field to the incident light field. We obtain the reflection coefficient by dividing the
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Figure 3.3: Plots of (a) the magnitude-squared of the reflection coefficient, giving the
cavity reflection and (b) the phase of the reflection coefficient. The figures are plotted with
a reflectivity r = 0.9.

reflected light field in Eqn. (2.40) through the incident light field Einc

R(ω) =
Eref

Einc

=
r
(
exp

(
i ω

FSR
− 1
))

1− r2 exp
(
i ω

FSR

) , (3.13)

where ω = 2πν is the angular frequency, corresponding to the laser frequency ν. This
complex number has an amplitude |R(ω)| equal to the amount of reflected light in units
of Einc and a phase arg[R(ω)] which is the phase shift the reflected light field undergoes
upon reflection. Plotting |R(ω)|2 and arg[R(ω)] in Figure 3.3 reveals that this phase of the
reflected light is not symmetric around a resonance. If we are able to measure the phase,
we know if the laser frequency increases or decreases.

The PDH-locking scheme is meant to perform exactly this measurement. The basic
setup to perfom PDH-locking for a diode laser is depicted in Figure 3.4. The diode laser
emits light of frequency ω and field amplitude E0. To isolate the reflected signal from
the cavity we use a quarter wave plate and polarizing beam splitter (PBS). The initially
p-polarized beam crosses the PBS without being affected. Passing the quarter wave plate
twice transforms the beam into the s-polarized state, which is reflected at the PBS, and
can be measured with a photo detector. Before reaching the cavity, the beam is phase
modulated by an electro optical modulator (EOM). The topics of EOM are well described
in Ref. [24]. An EOM is an optical device that can shift the phase of electromagnetic
radiation proportional to an applied voltage. In this example a local oscillator provides a
sinusoidal voltage signal of frequency Ω that drives the EOM. The light passing through
the EOM becomes

Einc = E0e
i(ωt+β sin Ωt). (3.14)

Here, β is the modulation depth which is proportional to the amplitude of the applied
voltage signal. Equation (3.14) can be expanded using Bessel functions [23]
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Figure 3.4: Schematic setup for the Pound-Drever-Hall locking scheme. Light rays are
indicated by the red lines and the electrical signal flow is indicated by the dashed black
lines.
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Einc ≈ [J0(β) + 2iJ1(β) sin Ωt]eiωt

= E0[J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t]. (3.15)

Equation (3.15) gives rise to a very intuitive way to explain the effect of the EOM with a
sinusoidal signal. We have three beams incident on the cavity with three different frequen-
cies: the carrier with unchanged frequency ω and intensity Ic = J2

0 (β)I0 and two sidebands
with frequencies ω±Ω and intensities Is = J2

1 (β)I0. We can apply the reflection coefficient
in Eqn. (3.13) to each of the three beams at the corresponding frequency to derive the
electric field of the reflected beam:

Eref = E0[R(ω)J0(β)eiωt +R(ω + Ω)J1(β)ei(ω+Ω)t −R(ω − Ω)J1(β)ei(ω−Ω)t]. (3.16)

The phase information we are interested in is entered through the reflection coefficient in
Eqn. (3.16). One can already guess the intention behind this procedure: the oscillation of
the electric field is far too fast to be observed directly with any electrical device. Therefore
we created two extra beams with different frequencies but a definite phase relation. By
overlapping these beams, their individual electric fields will interfere with each other and
create an oscillating envelope. One speaks of a beat signal with a frequency equal to the
frequency difference of the interfering beams. In our case the beat frequency is Ω, which
typically has a MHz frequency. Hence, this frequency is far lower than the optical frequency
and the beating signal’s phase can be resolved with a fast photo detector. We should keep
in mind that the photo detector does not measure the electric field, but the light intensity.
We use Eqn. (2.43) to calculate the intensity on the photo detector [23]

Iref =Ic |R(ω)|2 + Is{|R(ω + Ω)|2 |R(ω − Ω)|2}
+ 2
√
IcIsIm[R(ω)R∗(ω + Ω)−R∗(ω)R(ω − Ω) sin(Ωt)

+ (2Ω terms)], (3.17)

where we assume that the modulation frequency is far higher than linewidth of the cavity,
i.e. Ω� FSR/F . In Eqn. (3.17) the first line contains oscillations with the light frequency
ω, which averages out to a DC signal on the PD. The second line includes the desired
beating signal between the carrier and the sidebands and the third line represents the
beating signal of the two sidebands against each other with frequency 2Ω. The electric
signal

U(ω) = UDC + e(ω) sin(Ωt) + (2Ω terms), (3.18)

of the PD is proportional to Iref, with the PDH error signal

e(ω) ∝ Im[R(ω)R∗(ω + Ω)−R∗(ω)R(ω − Ω)]. (3.19)
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Figure 3.5: Schematic setup for the Pound-Drever-Hall locking scheme. Light rays are
indicated by the red lines and the electrical signal flow is indicated by the dashed black
lines.

We isolate the error signal by comparing it with the signal of the local oscillator. This
operation is done via a frequency mixer, which performs the mathematical operation of
multiplying its inputs. With the mathematical identity

sin(αx) sin(α′x) =
1

2
{cos[(α− α′)t]− cos[(α + α′)t]} (3.20)

we see that the multiplier output will be equal to

Umult,out =[UDC + e(ω) sin(Ωt)]× sin(Ωt)

=
1

2
e(ω) + UDC sin(Ωt)− 1

2
e(ω) cos(2Ωt). (3.21)

The following low pass filter gets rid of the remaining oscillating terms in (3.21) and we
are left with the error signal, which is plotted in Figure 3.5.
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Chapter 4

Ultrastable reference cavity

An ultrastable reference cavity system consists of two parts: the reference cavity and
the cavity housing. The purpose of an ultrastable reference cavity housing is to provide
an environment which is extremely well isolated from the outside world. State-of-the-art
cavity housing designs even allow transporting the reference cavity in a car [25].

When I joined the lab, I took over the project from the former master student Nejc
Janša to construct such an ultrastable reference cavity . In his master thesis [26], he
thoroughly describes and justifies the design of the ultrastable reference cavity housing as
well as reports on the first progress to assemble the cavity housing.

This chapter briefly reviews the important concepts of what needs to be considered when
building a stable frequency reference system. Then, we focus on how the whole system was
assembled and the problems we encountered. To conclude we discuss the measurements
that were performed to test the cavity’s isolation from external temperature fluctuations.

4.1 Frequency stability of a resonator

The resonant frequencies of an optical resonator and its stability can be influenced by
several effects. Light is resonant with a cavity of length d, if its frequency ν is a multiple
of the free spectral range of the cavity:

ν =
lc

2dn
. (4.1)

Here, l denotes the longitudinal mode number, c is the speed of light in vacuum, and n
is the index of refraction of the material inside the resonator. From Eqn. (4.1), we can
see that the resonant frequencies depend only on two quantities that might be subject to
variations: the cavity length d and the index of refraction n. To see how changes in d or
n affect ν, we take the total derivative of Eqn. (4.1) and divide the result through Eqn.
(4.1). We find an expression for the fractional stability of ν which depends on both the
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fractional stability of the cavity length and the fractional stability of the refractive index:

∆ν

ν
= −∆d

d
− ∆n

n
. (4.2)

Focusing on changes in the cavity length we can conclude that we need a length stability
in the 10−16 m range for a frequency stability of 1 Hz. This means that the length stability
has to be on the order of the proton radius. One can imagine that from a technical point
of view, achieving such length stabilities is a challenging task.

4.1.1 Thermal expansion

Most materials expand (contract) under the influence of rising (falling) temperature T .
Changes in the temperature are connected to length changes as

∆d

d
= α(T ) ∆T +

1

2
α′(T ) ∆T 2 +O(∆T 3), (4.3)

where α is the coefficient of linear thermal expansion (CTE), α′(T ) is its first derivative
with respect to T , and ∆d

d
is the fractional length change that occurs when the temperature

is changed by ∆T . To hold d as constant as possible, one usually attaches the mirrors of
a cavity to a “spacer” which holds the mirrors at a constant distance. Ideally, the spacer
material has a very low CTE. Table 4.1 lists the most common spacer materials and their
values for their CTE; we see that ULE-glass and ZERODUR are good candidates as spacer
materials.

Material αT in K−1 E in GPa
Corning ULE R©-glass Premium Grade 0± 30× 10−9 67.6
ZERODUR R© Expansion Class 2 0± 100× 10−9 90.3
Fused Silica 5× 10−7 72
Copper 17× 10−6 127

Table 4.1: A list of common spacer materials with their CTE at room temperature and
Young’s modulus. Copper is listed for comparison. Values are taken from Refs. [27], [28],
[29] and [30], respectively.

The CTE itself is also a function of temperature, and for certain materials, there is a
temperature at which its first order contribution vanishes, i.e. α(T ) = 0. To minimize
the effects of temperature changes further, spacers can be operated at this zero-crossing
temperature. Taking α′(T ) = 1.7 × 10−9 K−1 [18] in the case of ULE-glass near its zero-
crossing, we see that fractional length changes in the 10−15 range require a temperature
stability of less then 1 mK.

Furthermore, to minimize the effects of thermal expansion, one must find a good way
to support the resonator. If the cavity is sitting on a material with a very different CTE,
temperature fluctuations might induce stress, bend the spacer and therefore alter the cavity
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length. The proper method is to decouple the spacer with an elastic material and let the
spacer sit on another construction with low expansion glass, for instance Zerodur.

4.1.2 Vibrations

Another natural reason for changes in the cavity length are vibrations, which bend and
deform the spacer. The total length change ∆d of a material which is exposed to an
external force F is determined by its Young’s modulus

E =
Fd

A∆d
. (4.4)

Here, F is applied to a surface A of an object with length d. Although we are already quite
limited in our choice of materials with a low CTE, one might try to maximize Young’s
modulus or choose a spacer with a large cross-section. This method can improve the
performance by a small factor. However, to make the system nearly insensitive to vibrations
one has to apply different methods.

A great way to reduce the sensitivity of the cavity length to vibrations by orders of
magnitude is to support the optical resonator in a way such that length changes caused by
vibrations cancel out and conserve the total length of the cavity. These special supporting
points can be found via finite element analysis as described in Ref. [31] and should be
considered when designing the cavity housing.

Another possibility to decouple the cavity from vibrations is to use a vibration isolation
platform. Recent progress in precision optics experiments like gravity wave detectors have
improved the technique of vibration isolation tremendously (see for example Ref. [32] for a
state of the art vibration isolation platform). Commercial vibration isolation platforms are
available in active and passive versions and in a large variety of different sizes. Furthermore,
one might consider to choose an elastic material as supporting pads for the cavity. These
materials can absorb vibrations effectively, especially if the vibrations have to go through
several layers. To account for acoustical noise one can build an acoustical shield around
the cavity system.

4.1.3 Pressure fluctuations

Equation (4.2) shows that not only changes in the spatial cavity length are of importance.
The optical path length is the important quantity that has to be kept constant. Pressure
fluctuations alter the refractive index of the medium between the cavity mirrors, and there-
fore, change the optical path that a light ray traverses. At a pressure of one atmosphere, air
has a refractive index of nair = 1.0003 and vacuum has nvac = 1 by definition. Assuming
a linear dependence, these two numbers can be interpolated to obtain the refractive index
as a function of the pressure p

n(p) ≈ 1 +
3× 10−7

mbar
p. (4.5)
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This rough estimate, Eqn. (4.2) and the assumption that the absolute pressure p� 1 mbar
can be used to estimate the effect of pressure fluctuations on the frequency stability:

∆ν

ν
≈ −3× 10−7

mbar
∆p. (4.6)

From Eqn. (4.6), we can conclude that we need a pressure stability of at least 10−8 mbar
to keep the effects on the frequency stability in the 10−15 range. Therefore, it is necessary
to store the cavity in vacuum. Storing the cavity in vacuum has further advantages: for
instance, thermal heat conduction by convection is suppressed and acoustic phonons cannot
propagate through the vacuum.

4.2 Design

Choosing a good design for the cavity housing is very important, because the design de-
termines how well the reference cavity can be decoupled from environmental disturbances.
The final design was done by Nejc Janša, and the design includes elements from commer-
cial systems and from the “JILA cavity” in Ref. [18]. Figure 4.1 shows a picture of the
completely assembled cavity system. On the picture, the chamber is located on the edge of
the optical table for alignment purposes. Later, the setup will be moved to the table center
as the center position is the least effected by vibrations. This section briefly describes the
design of the stable reference cavity. For details, see Ref. [26]. To do so, we start at the
bottom and work through the different elements towards the optical resonator. In Figure
4.2 you can see a rendering of the chamber with its different sections.

4.2.1 The chamber

The whole vacuum chamber sits on a vibration isolation stage that was bought from Mi-
nusK Technology. The stage is completely passive and it features very low natural fre-
quencies, which are 0.5 Hz vertically and 1.5 Hz horizontally. The custom-cut breadboard
provides a surface to mount the required optics and lies on four Sorbothane pads, which
further dampen vibrations. The breadboard is cut in a way that fits exactly on the vibra-
tion isolation stage and still allows access to the shipping screws, which are useful to lock
the vibration isolation stage when mounting optics.

The main vacuum chamber is made out of aluminum, alloy EN AW 5083. Although
the best vacuum results are achieved with stainless steel, its thermal conductivity κ is
rather low compared to aluminum (see Table 4.2). A high thermal conductivity is required
to ensure fast temperature homogenization around the chamber. Together with the high
heat capacity of aluminum, the chamber acts as a passive low pass filter for temperature
variations.

In the front two electrical feedthroughs are realized as D-sub 9 connectors and the two
windows on the right and left-hand sides provide optical access to the cavity. The windows
are tilted to avoid any undesired back reflection. One of the downsides of aluminum is that
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Figure 4.1: Vacuum housing of the reference cavity. The aluminum vacuum chamber sits
on the black vibration isolation stage, separated by a breadboard which later is used to
mount all the necessary optics. On the back side one sees the ion pump that is connected
through a 5-way cross to the chamber. An angle wave is connected to another port of the
5-way cross, which allows to connect a turbo pump via a flexible bellow (top left).
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aluminum is a very soft metal, and therefore you cannot use copper gaskets for sealing any
of these conflat connections. Alternative gaskets are made out of Viton. Viton is good
for high vacuum applications and can be used inside the chamber as well. Unfortunately,
Viton is penetrable for noble gases which limits our vacuum and has to be considered when
choosing the vacuum pump.

On the back side of the chamber, a 5-way cross connects an “easy close” angle valve
and an ion pump to the chamber. The ion pump provides a vibration free possibility to
keep the pressure in the chamber continuously low once the chamber was pumped out with
the membrane and turbo pumps. We used a 10SW DI ion pump from Gamma Vacuum
with a pumping speed of 8 L/s. It is important that this pump is able to pump noble gases,
as they might penetrate through the Viton seals.

Material κ
(

W
m K

)
c
(

J
kg K

)
Stainless Steel 16.2 500
Aluminum EN AW 5083 120 900
Copper EN CW008A 393 385

Table 4.2: A list of commonly used materials for vacuum technology. We compare their
thermal conductivities κ and specific heat capacities c. Although best vacuum results are
achieved with stainless steel, its thermal conductivity is rather low.

4.2.2 Active temperature stabilization

Inside the aluminum vacuum chamber sits a box made of copper. This box is actively
temperature stabilized and copper with its high thermal conductivity is perfectly suited
for this purpose. To use copper inside high vacuum, we have to be careful which alloy of
copper we use. For this box we decided on the alloy EN CW009A, which has a very low
oxygen content. The shield is made out of eight parts, which have very flat contact surfaces
and are carefully screwed together to have the best possible thermal contact between them.
The copper box sits on four Viton pads. To reference the box to outer chamber, both the
bottom of the aluminum chamber and the bottom part of the copper box have square
extrusions that fit to the Viton pads. These extrusions have small spiral extrusions that
should prevent air from getting stuck below the Viton pads. This should prevent virtual
leaks that contaminate the vacuum. For the same reason every thread has a venting hole
to not allow air to get stuck between thread and screw.

To temperature stabilize the copper box Kapton heating tapes are used. They are
compatible with in-vacuum use and come in various shapes and power specifications. In
total four heating tapes are glued onto the copper box, one on each of the larger sides.
The copper box features small holes on each of its sides to glue thermistors with good
thermal contact into them. These thermistors are used to control the heating elements
and to monitor the temperature of the box.
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Aluminum vacuum housing

Passive radiation shield

ULE-cavity

Zerodur spacer

Copper box

Figure 4.2: This rendering shows the different stages of the cavity housing. Going from
outside to the inside you see the aluminum vacuum chamber, the temperature controlled
copper box, the passive radiation shield and the ULE-cavity, which sits on a Zerodur
spacer.
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4.2.3 Passive temperature stabilization

Moving further inside the cavity system, we encounter the Zerodur spacer that again sits
on four Viton pads. Just as before, extrusions serve to reference the Zerodur spacer to
the inside of the copper box. The low thermal expansion coefficient of Zerodur provides a
stable environment for the cavity. On the top side, the Zerodur spacer has a raised ledge
with square extrusions to mark the supporting positions which were calculated to make
the cavity insensitive to vibrations.

The raised ledge also serves as a reference for the radiation shield. The radiation shield
is made from a sheet metal copper alloy EN CW008A. The shield should act as a passive
part to reduce thermal energy transfer to the cavity via radiation and to homogenize
temperature. To work well as a radiation shield, the shield must have a very low emissivity
ε, which is a measure of how well the surface emits or absorbs thermal radiation. While
a black body radiator would have εBb = 1, a polished copper surface may achieve an
emissivity as low as εCu = 0.012. The radiation shield is made out of two parts and is
designed to cover most of the solid angle around the cavity.

4.2.4 ULE-cavity

Here, I report on the same cavity spacer as in Nejc Janša’s master thesis (Ref. [26]), but
with different mirrors. After assembling the whole system for the first time, we measured
a decrease of the cavity finesse. The manufacturer replaced the old fused silica mirrors
with ULE-mirrors and remeasured the zero-crossing temperature. Details are given below
in Section 4.3.3. The following paragraph describes the latest version of the cavity.

The ULE-cavity was bought from Stable Laser Systems (SLS) and manufactured by
Advanced Thin Films (ATF). SLS provided us with a measurement of the zero-crossing
temperature which was measured to be 33 ◦C. For our model (ATF-4020-4), the supporting
positions that make the spacer insensitive to vibrations were calculated to be separated by
28.5 mm. The spacer has a diameter of 50 mm and the mirrors are separated by 100 mm,
giving a free spectral range of νFSR = 1.5 GHz. One of the mirrors is plane while the other
has a radius of curvature of R =500 mm. The mirrors are made on a ULE substrate and are
coated to have a finesse of approximately 280 000 at 689 nm and 698 nm. The ULE-cavity
sits on a set of four Viton pads, making it in total three stages of rubbery material that
can effectively dampen vibrations.

4.3 Assembling the cavity

Because the cavity housing is evacuated, great care must be taken during the assembly
of the different parts. Any contamination could ruin the vacuum. Therefore one should
always wear appropriate gloves when dealing with vacuum components and maybe even
a hairnet. Furthermore it is recommended to prepare and clean all the tools that one is
going to use before breaking vacuum. This measure limits the risk of contaminating the
vacuum accidentally and reduces the overall time that the chamber is exposed to air.
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4.3.1 Cleaning vacuum parts

Prior to assembling the cavity, all parts were separately cleaned using a standardized
procedure. A lot of useful information and tips on cleaning vacuum parts can be found in
Ref. [33].

After the components arrived from the machine shop, every side was wiped with iso-
propanol to get rid of machining particles, grease, and oil. When any visible dirt was
removed from the parts, they were placed into an ultrasonic bath. The ultrasonic bath
is filled with deionized water and Liquinox, a vacuum cleaning soap made by Alconox.
After the parts were sonicated for 10 minutes at 40 ◦C, they were taken out of the bath
and were flushed with deionized water to wash off the soap. We flushed every side of each
part for approximately 10 s to make sure that all the soap was gone. After flushing, we
took special care to not touch the parts without gloves, and we avoided to touching the
surfaces which are exposed to vacuum. Then, every side of each component was rinsed
with acetone, quickly followed by a rinse with isopropanol to wash off everything before the
acetone evaporates. Afterward, the parts were again flushed with deionized water and were
placed on a sheet of fresh vacuum aluminum foil for drying. If the part contains threads or
other small openings, we blew the part off with dry nitrogen. The alternative was to omit
the last flush with deionized water so as not to have the risk of water being stuck. As soon
as the parts were dry, we wrapped them in aluminum foil and loaded them into the oven.
The baking should evaporate leftover solvents and water that still resides at the surfaces
of the parts. The aluminum foil should help to keep the parts clean after taking them out
of the oven to reduce the overall exposure to air. Good timing is essential, because leaving
the parts outside vacuum for weeks would undo most of the positive effects of baking. We
placed the parts into the vacuum not later then one day after baking.

Copper surfaces oxidize rapidly and after the radiation shield arrived from the machine
shop oxidized fingerprints were visible spread all over the surface. A first baking in our oven
made the situation even worse, because afterward the surface of the shield was strongly
oxidized. The problem is that if the surface of the copper is not polished, its emissivity
is not εCu = 0.012, but closer to εCu,oxidized = 0.78. To remove the oxide layer, we used
citric acid. First, the surfaces were wiped off and then the shield was left over-night in
a citric acid solution. To improve the radiation properties further, the shield was sent to
plasotec GmbH, a company for plasma polishing. The difference can be seen in Figure 4.3.
Baking the shield without oxidizing the surfaces again was problematic. We did not want
to omit baking, so we decided to bake the shield under an Argon atmosphere. Therefore,
I packed the radiation shield in aluminum foil, filled the package with argon before closing
it, placed the two parts into our oven, and afterward flushed the whole oven with argon.
The oven has two valves and a volume of 0.16 m3. I filled the oven from the lower valve
while the upper valve was open. I set 0.5 bar on the pressure regulator which is connected
to the lower valve by a 10 m long tube with 4 mm diameter. Using Poiseuille’s equation for
compressible fluids, we can derive a total Argon flow of about 10 times the oven volume,
within 20 minutes. Then I closed the upper valve and lowered the pressure difference to
a little bit above one atmosphere, while baking over night at 130 ◦C. The result looked
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(a) Radiation shield after the first bake. (b) Radiation shield after plasma cleaning.

Figure 4.3: Radiation shield before and after plasma cleaning.

promising, although you could see small oxidized fractions which I attribute to oxygen
that was stuck in the aluminum foil package.

For synthetic material we did not use acetone because it dissolves most synthetic ma-
terials. Kapton is not problematic and one should use acetone to wash off the labels of the
heating tapes. None of the electronic parts went into the sonicator.

4.3.2 Assembling the parts

When I joined the lab, the vacuum chamber was already partly assembled. The aluminum
chamber, the copper box, and the stainless steel components with the ion pump were
already in place. Back then, a pressure gauge was installed on one end of the 5-way
cross. The radiation shield and the cavity were not yet implemented, nor were the heating
elements or thermistors glued onto the copper box.

Before trying to glue heaters and thermistors directly on the copper box, we decided to
prepare a test piece to check the vacuum compatibility of all the components. Therefore, we
took a piece of copper of the same alloy as the copper box and glued a Kapton heating tape
and a thermistor on the test piece. We used EPO-TEK R© H77, a thermally conductive glue
with low outgassing properties. This glue is electrically insulating, so gluing the thermistors
into their designated holes does not create any shorts between their uninsulated leads.
Special care was taken to not create any air bubbles below the heating tapes or in the
thermistor holes to prevent virtual leaks. Especially the heating tapes can suffer from
a bad thermal contact in the presence of bubbles. Locally they could get hotter than
intended and start outgassing. It was hard to keep the heating tape in place, because
the glue only sticks after we cured it at 130 ◦C in the oven. For the final round, it was
necessary to use special weights that keep them in place. For the thermistors, we brought
aluminum foil into the right shape to support them. After placing the test piece into the
chamber and connecting the electrical parts to the D-sub feed through, we could evacuate
the chamber. The pressure reached 2 × 10−6 mbar, which was the same value as without



4.3 Assembling the cavity 41

Figure 4.4: One side of the copper box before the copper box was assembled. On the
left end you can see the leads of the thermistor and in the middle a Kapton heating tape
was glued onto the copper surface. The inlet shows the weight that was used to keep the
heating tape in place during the curing step in the oven.

the test piece. Even ramping up the temperature of the test piece to 49.6 ◦C did not effect
the pressure a lot. We concluded that all pieces were vacuum compatible and proceeded
with the assembly.

We started with the copper box. After disassembling we could glue the thermistors
and the heating tapes. This time we used a copper block with the same geometry as the
heating tapes to ensure they stay in place and lie flat on the surface. The result looked
promising (see Figure 4.4).

Wiring the thermistors and heating tapes was a bit problematic. Unfortunately it is
not possible to just solder the connections, because the flux contained in the soldering tin
would contaminate the vacuum. We used screw connectors, made out of an beryllium-
copper alloy. They were quite heavy and not insulated, so we had to ensure that even after
years of operation, gravity would not pull them down and create a short by touching a
metallic surface. Ceramic beads of different sizes were used to insulate the bare thermistor
leads and to secure the screw connectors. The heating tapes were delivered with Teflon
insulated wires. Although Teflon should be fine for high vacuum, we decided to keep the
insulation as short as possible to limit the overall amount of synthetic material inside the
chamber.

The Fabry-Perot cavity was not unpacked until shortly before putting the cavity into
place. As the positioning points were not referenced to the cavity, we used a ruler to find
the correct position and checked carefully that the spacer does not touch the radiation
shield at any point (see Figure 4.5). The venting hole of the cavity was initially closed
with a piece of Kapton tape. The tape was removed only just before placing the cavity
into the vacuum chamber. After putting the Zerodur spacer with cavity and the bottom
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Figure 4.5: The Fabry-Perot cavity sits on the Zerodur spacer, supported by Viton pads
in a way that make the cavity insensitive against vibrations. In the front you can see the
bottom part of the radiation shield.

part of the radiation shield into the desired place, the top part of the radiation shield was
carefully put in place. When the copper box was closed, only the wires had to be connected
to the electrical feedthrough while using ceramic beads (see Figure 4.7). As a final step
the whole chamber could be closed up.

The membrane and turbo pumps evacuated the chamber and within a day the pressure
inside the chamber went down to 2× 10−6 mbar. To further reduce the pressure, we baked
the whole chamber. Baking evaporates the water that still resides on the surfaces inside
the chamber. The pumps can then remove the water and the vacuum quality increases.
Thermocouples were attached to the chamber and the chamber was wrapped with alu-
minum foil. A layer of heating wires provide the necessary thermal energy. The heating
wires are followed by a layer of aluminum foil, fiber glass and another layer of aluminum
foil to thermally isolate the chamber from the outside world. The chamber was then baked
for two weeks at 130 ◦C. The initially implemented pressure gauge broke during baking and
could not be used any more. Fortunately, the ion pump can display the pressure calculated
from its current, which dropped to 4.8× 10−8 mbar after two more days.

4.3.3 Mirror contamination and second attempt

When the optical setup was ready to do initial measurements, we observed that the finesse
of the cavity was lower then what it was supposed to be. Stable Laser Systems specified
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Figure 4.6: The radiation shield is in place.

Figure 4.7: The final assembled copper box. White ceramic beads in different sizes are
used to insulate the bare thermistor leads and the screw connectors from each other and
the metallic surfaces. The screws were tightened as tightly as possible to ensure they would
not get loose over time.
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(a) Mirror before cleaning (b) Mirror after cleaning

Figure 4.8: Image of the contaminated mirrors before and after they were cleaned.

a cavity finesse of more than 200 000, but we measured 65 000 (see Figure 2.7 for the ring
down measurement). We concluded that at one of the performed steps, the mirrors were
contaminated which led to the decrease in finesse. Therefore, we disassembled the cavity
again and sent the Fabry-Perot resonator back to the manufacturer who cleaned the mirrors
for us. Figure 4.8 shows pictures of the mirrors before and after they were cleaned. The
mirrors looked very dirty initially. Cleaning removed the visible dirt, but the finesse did
not improve. Stable laser systems provided us with a new pair of mirrors, which already
were described in section 4.2.4.

As we did not know what exactly caused the decrease in finesse, we decided to repeat
the procedure with a few changes. While the resonator was in the US for repairs, we baked
the vacuum housing again for two weeks at 130 ◦C with the turbo pump attached. We
hoped to get rid of any contaminant that still remained inside the cavity housing. When
the optical resonator with the new mirrors arrived again, we flushed the chamber with
argon, removed the broken pressure gauge to limit the total amount of elements attached
to the cavity, and placed the optical resonator back in its place. Before pumping down
the chamber, we measured finesse of the cavity to be 280 000 for 689 nm with a swept ring
down measurement and obtained the specified finesse. We remeasured the finesse after
each pumping step to exactly track what is happening. With the ion pump, we went
down to 8 × 10−8 mbar and the finesse remained high. This time the last baking step
was omitted, because we suspected that enhanced outgassing at high temperatures during
baking could have caused the mirror contamination in the first place. When we turned on
the heating tapes to stabilize the copper box to 33 ◦C the finesse dropped to ≈270 000. We
concluded that the heating tapes were responsible for the loss in finesse and turned off the
temperature control system.
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4.4 Temperature stability

To stabilize the temperature of the copper box we used the digital controller PTC10 from
SRS. In our configuration the PTC10 has two 50 W output channels and can monitor up to
four thermistors simultaneously. The PTC10 features a proportional-integral-differential
(PID) feedback loop, which can be tuned either manually or with the included feedback
autotuner. I usually autotuned the system once in the beginning and a second time after
the copper box settled to the desired temperature.

The measurements presented in this section were done with the first version of the
cavity. For the old cavity SLS measured a zero-crossing temperature of 49.6◦C. Therefore
the measurements performed here were done at 49.6◦C and not at 33◦C, which is the
zero-crossing temperature of the new cavity version.

4.4.1 Characteristic cooling time

Similar to a low-pass filter in an electric circuit, our cavity housing works as a low-pass
filter for temperature fluctuations. N. Janša used this analogy in Ref. [26] to calculate
theoretically up to which Fourier frequency temperature fluctuations are rejected by the
low-pass characteristics of the vacuum housing itself. The characteristic time constant τ is
the time it takes until an object of initial temperature Tinitial has reached 1/e of the initial
value. The theoretical result was a time constant of 69 h between the copper box and the
aluminum chamber. After the cavity was assembled we could measure the time constant.
We heated the copper box to 49.6◦C and left the box at this temperature for a week to let
the system equilibrate. Then we suddenly turned off the heaters. We used the data to fit
a function of the form

T (t) = (Tinitial − TRoom)e−t/τ + TRoom (4.7)

with Tinitial = 49.6◦C and where TRoom = 21.6◦C is the final temperature. The fitting result
can be seen in Figure 4.9, from which we obtain τ=20.6(7) h. Although the measured τ is
smaller than calculated, the result is very promising. We can assume that the characteristic
time constant for the optical resonator is far bigger than 20.6 h, probably exceeding 24 h.
This means that the daily temperature fluctuations are highly suppressed and do not
significantly influence the temperature of the cavity.

4.4.2 Temperature stability

To find the best temperature stability we tried different heater configurations. In all
configurations the thermistor glued to the bottom was used to control the heaters. We
wanted the bottom part of the copper box to have the best temperature stability, because
of its vicinity to the optical resonator.

The first configuration had all four heating elements connected in series. Thus the
bottom temperature of the copper box was very stable, with a root mean square (rms)
deviation of ∆Trms,bot ≈ 0.4 mK from the set point during one day, while the outside of the
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Figure 4.9: A dissipation of heat measurement of the copper box. The copper box was
heated to 49.6◦C and then heaters were shut down. The solid blue curve is the measured
data. The dashed red line is Eqn. (4.7) fitted to the data, using τ as fitting parameter.
The fit revealed τ=20.6(7) h.
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aluminum chamber had an rms deviation of ∆Trms,out ≈ 64 mK from the mean value. At
the top of the copper box (the most distant thermistor to the controlled bottom thermistor)
we measured a variation of ∆Trms,top ≈ 12 mK.

The second heater configuration was to only use the bottom heating element. The
deviations from the mean value during one day [∆Trms,bot ≈ 0.4 mK, ∆Trms,top ≈ 8 mK,
∆Trms,out ≈ 70 mK (Fr., 07.04.2017)] were similar to the deviations in the former configu-
ration. We settled on the second heater configuration.

In Figure 4.10, we heated the outside of the aluminum vacuum chamber with a heat
gun by 13 ◦C to see how a disturbance affects the temperature of the copper box, while
all heaters were connected in series. The bottom thermistor reacts with a two-minute
time delay and the disturbance is highly dampened. Interestingly, at the same time the
temperature measured by the thermistor on the top of the copper box dropped by more
then 100 mK. The reason is, that as soon as the bottom thermistor senses the disturbance,
the PTC10 shuts down all the heaters. A similar effect can be seen every day in the morning
when the first person enters the lab and turns on the light. The bottom thermistor senses a
small temperature variation and tries to compensate for it, leading the top of the copper box
to heat up when the lab cools down and vice versa. This behavior justifies the construction
of an acoustic shield around the whole chamber, which would reduce the effect of room
light on the cavity and further decouples the chamber from temperature variations in the
lab.
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Figure 4.10: Temperature response of the copper box to an external perturbation. The
aluminum chamber is heated, and only two minutes later the thermistor on the bottom of
the copper box responds.



Chapter 5

Locking procedure and results

5.1 Optical setup and components

The components for the optical setup have to be chosen carefully and should be optimized
for stability and low distortion of the beam quality. At the same time they must be small,
because the space on the breadboard is limited. To make full use of the given space, we
decided on a beam height of 4 cm. At 4 cm, we could still use the standard pedestals to
mount optics, but at the same time the beam could pass below the mechanical components
of the cavity. The whole setup can be seen in Figure 5.1. With this setup it is possible to
lock both lasers (689 nm and 698 nm) to the cavity. Their beam path is almost identical,
so we use the 689 nm beam path (displayed in red) as an example to go along the beam
path step-by-step and look at all components we use:

The beam emitted by the laser is coupled into a fiber. This fiber is special because it
contains an electro-optic modulator (EOM). The fiber-coupled EOM (“fiber EOM”) was
bought from JENOPTIK (model number PM705). To work with a fiber-EOM is very
convenient for several reasons. First, the polarization inside the polarization maintaining
fiber is already very well aligned to correct crystal axis. Second, the EOM does not have
a resonant circuit inside. Therefore we do not have to care about impedance matching
the applied RF-signal. Another great feature is the small transverse size and the long
interaction area, i.e. the long crystal length, which leads to a low half wave voltage. The
half wave Voltage Vπ is defined as the voltage that needs to be applied to the EOM to shift
the phase of the light by π. The fiber EOM PM705 achieves a Vπ as low as 4.2 V. The fiber
attached to the EOM has a mode field diameter (MFD) of 4.4 µm.

The light leaves the fiber using a customized out-coupler, which is optimized for stabil-
ity. The lens used (Melles Griot, part number 06GLC001) has a focal length of f1 = 6.5 mm
and is glued into a rotatable mount. By rotating the mount the fiber-lens distance can be
adjusted to collimate the laser beam. Collimation was done with a shearing interferometer
[34] located approximately 160 mm away from the out-coupler. Although the mounted lens
fits tightly inside the rotatable mount, the small degree of freedom is enough to cause the
beam leaving at an angle, which needs to be compensated.
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Figure 5.1: Optical setup on the cavity. The 698 nm beam is displayed in blue and the
689 nm beam in red to make them easy to distinguish. The fiber EOMs are also located
on the vibration isolation stage but are not displayed.
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To correct the beam path we placed two mirrors after the out-coupler. We used half
inch mirrors (Thorlabs BB05-E02) to save space. The mirrors were mounted in Polaris
mirror mounts (Thorlabs POLARIS-K05S2) because of their good stability properties. I
adjusted these two mirrors such that the beam propagates along the desired optical axis,
which is very important for the following telescope.

The telescope consists of two achromatic lenses with focal lengths f2 = 50 mm and
f3 = 45 mm. They are used to “shape” the incoming beam such that the outcoming beam
has perfect overlap with the beam that is resonant with the optical resonator. To avoid
beam distortion, the beam should pass perpendicularly to the surface and through the
center of the lenses. For this purpose, the orientation of the lenses to each other is fixed
by mounting them on a cage system. Two irises on the front and on the back of the cage
system made sure that the beam passes through the center of the lenses. The second lens
is mounted in a translation stage to allow for fine adjustment of the beam shape. How the
ideal focal lengths of the two lenses and their distance to each other were determined in a
later a later section on mode-matching.

Three mirrors in total are used to couple the beam into the cavity. This time we
used 1” mirrors with two monolithic Polaris mirror mounts (Thorlabs POLARIS-K1S5
and Thorlabs POLARIS-K1S4) because of their even better long-term alignment stability.
The third mirror is fixed in a custom periscope that is designed to adjust the beam height
to the height of the optical resonator (see Figure 5.2 for a render/photo of the mirror
mount). The two mirrors in the POLARIS mounts are used for mode-matching the beam
to the cavity. One of the mounts is screwed directly to the custom mount, which features
alignment pins to ensure a 45◦ orientation of the mirror mount. This mirror mount was
also chosen to have three adjustment knobs. The third knob gives us the necessary degree
of freedom to also adjust the mirror plane to match the optical axis of the cavity.

Both the λ/4 waveplate and the polarizing beam splitter are necessary to detect the
reflected signal from the cavity. The waveplate, which also is mounted on the custom
mount, transforms the incoming s-polarized light into circularly polarized light. When
the beam is reflected at the cavity, the light passes again through the waveplate and
transforms it into p-polarized light which is afterward reflected from the polarizing beam
splitter (PBS). A final mirror guides the reflected light towards an optical “short-pass”
filter that separates the transmitted light from the 698 nm beam from the 689 nm beam.
This filter (Semrock, Versa Chrome TSP01-704) is a special optical element that transmits
shorter wavelengths. The cutoff wavelength is very steep and can be tuned by changing the
angle of incidence on the filter. For example at an angle of incidence of 24◦ the transmission
of 698 nm is supressed by more than 6 orders of magnitude, while more than 99% of the
689 nm passes through. A good filter is important, because we do not want any other light
signal on the fast PDH photo detector that could disturb the error signal. After the filter
a lens (not displayed) focuses the beam onto the fast PDH photo detector.

On the other side of the cavity, the transmitted light also transforms into p-polarized
light and is picked of by a PBS. This time, the 689 nm beam is reflected on a long-pass filter
(Semrock, Versa Chrome TLP01-704) and guided on a CMOS camera. During alignment
it is a good idea to use a non-polarizing 50:50 beam splitter in front of the camera. The
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Figure 5.2: A render of the custom mirror mount with optics.

beamsplitter allows to simultaneously observe the transmission on a camera and a high
gain photo detector. The camera is necessary to identify the different TEM modes and to
make sure that we are locking the laser to the fundamental TEM00 mode.

5.2 Mode-matching

In Chapter 2 we have learned that a paraxial laser beam can exist in different TEM modes.
We will call the modes which are resonant with the Fabry-Pérot resonator the eigenmodes
of the resonator. Figure 5.3 shows the transmission signal of the Fabry-Pérot resonator
while the laser frequency is swept over a FSR. The eigenmode transmission peaks are
clearly visible and the camera tells us which peak corresponds to which mode.

The incident laser beam comes from a polarization-maintaining single-mode fiber and
leaves the fiber in the TEM00 mode. The term “mode-matching” describes the process
of shaping the incoming beam such that the beam has maximal overlap with the TEM00

eigenmode of the cavity. We use the telescope to transform the q-parameter of the incoming
laser beam into the correct shape and use the two “coupling” mirrors in front of the cavity
to align the incoming beam to the optical axis of the Fabry-Pérot resonator.

In section 2.5 we have evaluated the eigenmodes of a plano-concave resonator and
found that the beam waist forms at the plane mirror and can be calculated from Eqn.
(2.35). With this information, Eqn. (2.20) and the ABCD-law [Eqn. (2.32)] we are able to
calculate the q-parameter of the cavity eigenmode at any point on the optical axis. For the
incident beam we can look up the MFD of the optical fiber. In analogy to the beam radius
of a Gaussian beam, half of MFD is the radial distance to the optical axis of the fiber after
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Figure 5.3: Transmission signal on a photo detector while scanning the laser frequency
over one free spectral range. With the camera we can identify the single modes. The two
outer peaks correspond to the TEM00 mode. We can also identify the TEM10, TEM20 and
the TEM11 mode, while the last two modes are degenerate in frequency. The frequency
spacing between the TEM modes is 0.15×FSR.
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which the electric or magnetic field has decayed to 1/e of its peak. Therefore the MFD is
equal to twice the beam waist of the incoming laser beam at the position where the beam
leaves the fiber. The MFD of the fiber is 4.4 µm, which allows us again to calculate the
q-parameter of the incoming beam at every position on the optical axis.

To find the correct focal lengths of the lenses in the telescope we could proceed as
follows: First, we decide on the position where we want to place the telescope. We can use
the ABCD law and the transfer matrices in Table 2.1 to calculate the beam sizes of the
incident beam w1 and the eigenmode w2 of the resonator. Then we take a pair of lenses
whose focal lengths have the same ratio as the beam radii, so that f1/f2 = w1/w2. If we
separate them by a distance of f1 +f2, the magnification of the two lenses is given by f1/f2,
such that the beam size of the incoming beam matches the beam size of the eigenmode.
Now we can experimentally vary the distance between the two lenses to optimize the
coupling.

This method is easy to implement, but it might lack accuracy. More accurately we
could write the beam waist of the incoming beam as a function of the distance between
the lenses in the telescope. Knowing this function we can fit the incoming beam to the
eigenmode by varying the distance in the telescope.

I calculated the best mode-matching for the setup seen in Figure 5.1. The experimental
procedure to mode-match the incoming beam to the eigenmode of the resonator begins with
looking at the reflected light from the cavity. For now I left the beam splitter disassembled
and used the two coupling mirrors to overlap the incoming and the reflected beam. At the
same time I adjusted the position of lens 3 such that the reflected beam had approximately
the same size as the incoming beam. Then I started to scan the laser frequency with the
internal piezoelectric transducer (PZT) and looked with the ccd camera for a transmission
signal. For this adjustment it is helpful to turn off the light in the lab. If the reflected
signal was adjusted carefully, seeing the first faint transmission signal is not so hard. In
most cases this transmission is a high order TEM mode, which can be observed on the CCD
camera. The next step is to beam-walk the two coupling mirrors to reduce the observed
high order TEM mode to low order TEM modes until you find the TEM00 mode. Now it
should be possible to see the transmission signal by eye which helps a lot in guiding the
transmitted light onto a photo detector. An example for the transmitted light signal can
be seen in Figure 5.3.

The real work now is to iteratively improve the coupling efficiency to the TEM00 mode.
In other words, this means looking at the transmission signal and maximizing the TEM00

mode while minimizing the peaks caused by all other modes. Before beginning we should
recall the degrees of freedom we have to improve the coupling. First, we have the two
mirrors for coupling. The mirror farther away from the cavity is used to adjust the optical
axis and therefore is called “position mirror”. The mirror closer to the cavity (“angle
mirror”) is then used to adjust the angle of the laser beam. The second degree of freedom
is a third knob on the angle mirror. With this knob we can push the angle mirror back
and forth to adjust to the optical axis. A last degree of freedom arises from the second lens
in our telescope. We mounted the second lens on a translation stage in the cage system.
Moving the lens alters the beam size and the position of the beam waist. My strategy for
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mode-matching included the following three steps:

1. Improve mode-matching by altering the position and the angle mirror simultaneously.

2. Move the position of the second lens in the cage system and repeat step 1. If the
situation improved, proceed by moving the lens further in the same direction. If the
coupling became worse, try the other direction. In the first iterations I did quite
large steps of about half a centimeter and marked the positions on the rods of the
cage system. Later I used the fine adjustment screw for precise alignment. From
the coupling efficiency we can infer information on the beam size: If we couple to
high-order modes which have larger radial size, the beam waist is probably too large.
The lens should then be moved closer to the cavity.

3. In the end also the third knob of the angle mirror can be used to match the beam
to the correct optical axis. Together with the other two knobs, the mirror can be
pushed back and forward. After each change in the third knob, step one must be
repeated.

5.3 Electronics and setting them up

For successful locking of the laser to the cavity we also require electronics. We used a
home-built fast photo detector and two units from Toptica, the PDD/F for deriving the
error signal and the FALC 110 as loop filter.

5.3.1 Photo detector

The home built photo detector was built according to the schematics and description of the
electrical circuit in Ref. [26]. The photo diode inside the detector transforms the incident
light power linearly into a current IPD. This current is then transformed into a voltage
VPD that can be read off by e.g. a scope. The gain RG of the photo detector is a resistor
inside the circuit that determines the transfer ratio:

VPD = RGIPD. (5.1)

The larger RG is, the more sensitive the photo detector becomes. Unfortunately, with high
gain the bandwidth of the photo detector shrinks. The bandwidth of a photo detector
determines up to which frequencies the PD it capable to resolve modulations. As we have
seen in section 3.2 the photo detector must at least be able to resolve frequencies up to
the modulation frequency Ω. So the proper gain is a trade off between making the photo
detector as sensitive as possible and still having a bandwidth far above Ω. For stabilizing
the 689 nm laser I used the photo detector marked SW01 with a gain of RG = 2.49 kΩ
which results in a bandwidth of more than 50 MHz.
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5.3.2 PDD 110/F

The reflection signal of the photo detector is then fed into the Pound-Drever-Hall detector
PDD 110/F. The PDD 110/F features all the required electronics to create an error signal.
Figure 5.4 shows a picture of the front panel of the PDD 110/F and the internal schematics.
The schematics consist of two branches. The upper branch starts with the internal oscillator
signal which is adjustable between 12 MHz and 35 MHz. We set the modulation frequency
to Ω = 20.3 MHz, because this frequency was the resonance frequency of the EOM we used
before the fiber EOM arrived and then we stayed with 20.3 MHz for now. The oscillator
signal passes through an amplifier that can be manipulated on the front panel to adjust
the signal at the oscillator output between 0 and 1 Vpp. This output is then connected to
the EOM that modulates the phase of the light incident on the cavity. I tried to set the
amplification such that the sidebands in the through the cavity transmitted light signal
contain 4̃0% of the carrier power. At this ideal value the discriminator has the steepest
slope (see Ref. [23]).

The lower branch begins with the photo detector input. Here the cavity reflection
signal of the the fast photo detector is fed in (“PD input”). A high pass filter removes the
DC-part of the reflection signal. Before the signal is mixed with the oscillator signal the
PD signal can be amplified (“gain”-knob). According to the manual the photo diode input
signal should be between 10 mVpp (maximal gain) and 1 Vpp (minimal gain). Afterward
the mixer produces the error signal. Notice that the following 510 kΩ resistor and capacitor
C32 (1 pF) form a low pass filter with a bandwidth of 312 MHz. This low pass filter cannot
filter out the sum frequency 2Ω. The intention is to not limit the response to the bandwidth
of the low pass filter. The sum frequency is then sufficiently suppressed by the low pass
characteristics of the control servo and the laser diode itself. A phase shifter (“Phase”-
knob) allows to correct for phase delays that occur in the circuit. I adjusted the phase by
only looking at the error signal on the scope through a 2.5 MHz low pass filter to suppress
the sum frequency. By turning the “Phase”-knob I tried to maximize the central peak of
the error signal. Figure 5.5 shows the resulting error signal measured with a scope.

5.3.3 FALC

We used the FALC 110 from Toptica as a loop filter. Its task is to take the error signal
from the PDD 110/F and calculate a response which is then fed into the laser head to
counteract frequency changes. Figure 5.6 shows the front control panel of the FALC. The
error signal is fed into either the inverting (“invert”) or the non inverting (“noninv”) input
to achieve negative feedback. Otherwise the FALC tries to lock the laser to one of the
sidebands. One should consider to feeding the error signal via a coupler into the FALC
input. A coupler is an electrical device which has an input, an output and a “coupled”
port. Most of the input signal is fed through to the output, but a fraction is sent to the
coupled port. With the coupled port we are able to observe the error signal on a scope
and simultaneously maintain the 50 Ω environment.

After the signal passes through the input section, the circuit of the FALC splits into
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(a) PDD 110/F con-
trol panel

(b) PDD 110/F schematics

Figure 5.4: Pictures of the control panels of the (a) Pound-Drever-Hall detector PDD110/F
and (b) its schematics (taken from Ref. [35]).
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Figure 5.5: An error signal produced with the PDD 110/F. The modulation frequency is
Ω = 20.3 MHz.
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Figure 5.6: A picture of the FALC front control panel.
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Figure 5.7: Simplified FALC 110 block diagram. For a more detailed block diagram see
Ref. [36]. The error signal is split into two parts, the fast circuit branch (top) and the
unlimited integrator (bottom).
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two branches (see also the block diagram in Figure 5.7):

• The fast circuit branch takes over high frequency disturbances by modulating the
laser diode current.

• The unlimited integrator (ULI) branch with a high DC gain should take over low
frequency drifts with larger amplitude. Via the backplane, the FALC is connected to
the PZT actuator. Modulating the PZT is slower then modulating the laser current,
but the PZT covers a higher frequency range.

Separating these two branches has the advantage that we can set up the lock with the
fast branch only and the ULI turned off. This makes locking easier, because the high DC
gain of the ULI would send the frequency of the laser very far off if the laser frequency
does not sit on the error signal slope.

We will first have a look at the fast circuit branch. The fast circuit branch consists
of three integrators (called extra slow, slow and fast limited integrators, XSLI, SLI and
FLI, respectively) and one differentiator (called fast limited differentiator, FLD). Their
individual transfer functions can be changed with the corresponding DIP switches on the
front panel. Essentially with the DIP switches one chooses between different capacitor
values for the integrators and the differentiator. As a result, both of their gain slopes are
along the frequency axis. They can also individually be turned off (unity gain) using the
DIP-switch marked with a 0.

To achieve the first lock I followed the instructions in Ref. [36, p. 26]. This instruction
describes for instance how to adjust the input offset to the correct value. The general
procedure is then to set the correct parameters for the integrators and the differentiator
and connect the main output (“main”) to the DC modulation input of the laser head
with the main gain potentiometer turned completely counterclockwise. Then we scan the
laser frequency with the PZT over a resonance of the cavity, while watching the error
signal and the “Monitor Output” of the FALC on a scope. By slowly raising the main
gain potentiometer we suddenly see how the FALC tries to hold on to the error signal
slope. Decreasing the scan amplitude further towards zero and simultaneously adjusting
the frequency of the laser should result in a locked laser via the fast circuit branch. One
can adjust the laser frequency using either the PZT offset or the laser diode current, but
for fine adjustment the current should be used because it is more sensitive. The remaining
question left is how could we find good starting parameters? In my judgment, good starting
parameters were FLI=9 and SLI=6, whereas the XSLI and the FLD were turned to a flat
response (XSLI=6, FLD=1). This resulted in a gain of 52 dB for frequencies f < 200 Hz
and 15 dB for f < 3 kHz, respectively. With those parameters I achieved a lock that lasted
several minutes. It is a good idea to attach the error signal from the coupler to a spectrum
analyzer, which is very helpful in analyzing which frequencies are suppressed very well and
which are not. One can try to set the FLI to higher frequencies, letting the SLI follow.

As soon as we have achieved locking the laser with the fast circuit branch we can start
to set up the unlimited integrator branch. To this end, we connect the unlimited output



60 5. Locking procedure and results

0 0.5 1 1.5 2

Frequency (MHz)

-110

-100

-90

-80

-70

-60

-50

P
S

D
 (d

B
m

/R
B

W
)

Figure 5.8: The plot shows the power spectral density of the error signal, while locking
the 689 nm laser to the old F = 65 000 cavity. The controller bandwidth at 1.2 MHz is
indicated with a dashed line.

“unlim” to a scope. Good starting parameters are found in Ref. [36, p. 27]. The main task
is to set the offset of the unlimited integrator branch to the correct value. We first lock the
laser with the fast circuit branch and then activate the unlimited integrator. Probably the
laser will then fall out of lock because the unlimited integrator offset was not well adjusted.
This unadjusted offset will cause the ULI to send a far too large signal to the laser and
sends it off the error signal slope. Looking at the scope: if the unlimited integrator output
rises (falls) we have to decrease (increase) the offset. We then repeat this procedure by
continually adjusting the offset, until the laser does not fall out of lock after turning on the
ULI. For fine adjustment I watched the transmission signal before I turned on the ULI. As
soon as the ULI is turned on, its contribution pulls the transmission signal to a lower value.
We adjust the offset slowly until we retrieve the old value for the transmission signal. This
method ensures that we lock to the central frequency of the transmission peak.

When locking with the ULI is achieved, the ULI takes over the low frequency parts.
Now we can try again to maximize the bandwidth of the lock using the fast branch. To do
so I tried to iteratively push the FLD to the maximum followed by the FLI and then by
the SLI, while watching the error signal on the spectrum analyzer. The spectrum analyzer
was set to a resolution bandwidth (RBW) of 100 Hz. The reference level was 0 dBm and
the detection method was rms. The result can be seen in Figure 5.8, where the effect of
the lock becomes evident. The blue curve shows the power spectral density with a low
overall gain. By raising the overall gain (orange curve) we see that frequencies in the kHz
range are suppressed as indicated by the arrow. At the same time, the bandwidth of the
controller at 1.2 MHz becomes visible.
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This whole procedure resulted in stable lock. Locking times of several hours were
achieved and the lock is insensitive against vibrations. The lock was stable enough to
withstand vibrations that arise from hitting the surface of the optical table with a screw-
driver. Such stability is desirable, because it allows working at the laser table without
unlocking the laser.
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Chapter 6

Unibody Littrow Laser

In addition to my main project of locking a laser to an ultrastable reference cavity, I also
worked on a project of building an external cavity diode laser. The goal of the project was
to have a simple laser design with which we can build lasers with a large variety of different
wavelengths. Ideally we would have a ready construction set and just have to assemble the
parts. The “Unibody Laser” design [37] from the Steck Lab seems to fit our requirements.
This laser was originally constructed for cooling strontium and thus the components for
the wavelengths we are interested in are readily available.

This chapter starts with a brief introduction on diode lasers, followed by a report on
constructing a laser. The main focus lies on the selection criteria of the different parts.

The laser I constructed has a nominal wavelength of 632.8 nm. This wavelength is
special for strontium, because an optical lattice composed of light with λ=632.8 nm can
capture atoms in the 5s2 1S0 state, but results in a plane potential landscape for atoms in
the 5s5p 3P0 state [38]. This wavelength is therefore called a “magic-zero” wavelength.

6.1 ECDL

Semiconductor lasers are one of the most common sources of coherent laser light. In
semiconductor lasers, the radiation is created by interband transitions of electrons from
the conduction band to the valence band. This transition happens in a confined area,
which is enclosed between two partially reflective surfaces (“mirrors”). Those surfaces (or
laser facets) form an optical resonator. For us it is enough to treat a laser diode (LD)
as an optical resonator, which encloses a gain medium. As a light field bounces back and
forth between the cavity mirrors, it passes through the gain medium several times and gets
coherently enhanced.

The LD chip in which this amplification process happens is usually quite small, and the
cavity lengths are in the 100–1000µm range. This small resonator size results in a cavity
with a rather low Q-factor. Hence, the resonances of the cavity are very broad and result
in a laser linewidth of typically several 10–200 MHz [39].

One simple approach to narrow down the linewidth is to extend the cavity length. One
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Θinc

Figure 6.1: Schematic representation of the Littrow configuration. A grating works as
frequency selective element and the first diffraction order is reflected back into the LD.
The undiffracted beam leaves the resonator and is used as laser beam.

can think of building an external cavity around the LD, which is formed by one of the LD
facets and an external mirror. The result is called an external cavity diode laser (ECDL),
where the LD chip is used as gain medium. Using a frequency dependent external mirror
brings the additional benefit to be able to tune the laser frequency.

The most common choice as external mirror is an optical grating. A grating is an
optical element, which diffracts light according to the grating equation

sin Θinc − sin Θm = mgλ, (6.1)

where Θinc is the angle of incidence and Θm is the angle of the diffracted light ray. Both
are measured with respect to the grating normal, but have a different sign. The other
parameters are the wavelength λ and the grating constant g = 1/d, which is the reciprocal
of the spacing between the single grooves. The light is diffracted into several orders, labeled
with the integer diffraction order number m.

In the Littrow configuration, which is depicted in Figure 6.1, the first diffraction order
is reflected back into the laser diode. This means that Θm=1 = −Θinc and we arrive at the
Littrow equation

sin Θinc =
gλ

2
. (6.2)

6.2 Components

The individual components and the laser design are already very well described in Ref. [37].
What follows is a brief description of the most important design features as well as a more
intense focus on the components we have chosen individually for every laser with different
wavelength. These are the laser diode and the grating. In Table 6.1 we list wavelengths
for which we plan to build a Littrow laser and give suggestions for components to achieve
them. In this section we also discuss the selection criteria and how we decided on these
LD and grating combinations.
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Figure 6.2: A picture of the Littrow laser.

Figure 6.2 shows a picture of my completed laser with a peak wavelength at 632.8 nm.
The LD is fastened in the laser head and emits light towards the grating. A highlight is the
diffraction grating arm, which holds the diffraction grating. The grating arm is designed
to have low mass to avoid low-frequency mechanical resonances. Furthermore, it is formed
out of the same piece of aluminum for good stability. The resonator is designed to have
an angle of incidence (AOI) of 45◦ degrees onto the grating. With the fine adjustment
screw we can push grating back and forth to adjust the AOI. Furthermore we can shim
the grating to obtain an even larger AOI tuning range without bending the grating arm
too much. In the end we will be limited by the geometry of the design. A beam of 2 mm
diameter will be clipped before leaving the cavity if the AOI deviates more than 3.5◦ from
the intended 45◦.

The laser beam exits the chamber through a microscopy slide that we cut to the required
size. The slide itself is mounted in Brewster’s angle, so that light with an electric field
vector perpendicular to the plane of the optical table (s-polarized light) is transmitted
completely.

6.2.1 Choosing a laser diode

As we have seen in the discussion above, when building an ECDL we replace the small
internal resonator of an LD by a larger one. Unfortunately, when we place an untreated
LD in a larger resonator, we will end up with two resonators that compete against each
other. If the feedback from the grating is not high enough, the internal resonator will
dominate and we can not take advantage of the ECDL. On the other hand, if we increase
the feedback by choosing a different grating, the resulting output power will suffer because
more light is lost inside the resonator. The best performance and high output power can
be achieved if we make the reflectivity of one of the facets of the LD bad before placing the
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λ (nm) LD part nr. (supplyer) Grating part nr. (supplyer) g mm−1 AOI
461 NDBA116T (Nichia) 263232-XX50-424 (Zeiss) 3000 43.8◦

633 SAL-0635-010 (Sacher) 53-*-300R (Richardson) 2160 43.1◦

679 0680007022000 (Eagleyard) 53-*-059H (Richardson) 2000 42.8◦

688 0690007031000 (Eagleyard) 53-*-059H (Richardson) 2000 43.5◦

689 0690007031000 (Eagleyard) 53-*-059H (Richardson) 2000 43.6◦

698 SAL-0705-020 (Sacher) 53-*-059H (Richardson) 2000 44.3◦

813 0840060101500 (Eagleyard) 53-*-136H (Richardson) 1714 44.2◦

914 0920040101500 (Eagleyard) 53-*-239H (Richardson) 1500 43.3◦

922 0920040101500 (Eagleyard) 53-*-239H (Richardson) 1500 43.8◦

Table 6.1: Listed are the wavelengths for which we plan to build Littrow lasers and possible
components. Next to possible LD and gratings with grating constant g, we also list the from
Eqn. (6.2) resulting angles of incidence (AOI). The part numbers of LDs from Eagleyard
are very long and are therefore listed only partially. To obtain the full number number,
replace the symbol *** in EYP-RWE-***-SOT02-0000 by the listed number.

LD into the larger resonator. Decreasing the reflectivity of a LD facet can be done with
an anti-reflection (AR) coating. The authors in [39] explain how a LD can be AR coated.
Anti-reflection coated laser diodes for ECDLs are commercially available, but expensive.
The LDs listed in Table 6.1 feature an AR coating.

6.2.2 Grating

Selecting the right grating is very important and will have great influence on the laser
performance. The most important selection criteria results from the laser geometry. In our
laser the angle of incidence resulting from Eqn. (6.2) should be as close as possible to 45 ◦,
which is the intended position of the grating arm. This calculation already gives us an idea
of what the grating constant should be. Then we can look in the manufacturer’s catalogs
to find a grating with a g close to the calculated value. Richardson Gratings provides
a large number of standard gratings, and is therefore a good place to start any search.
The next selection criteria is the diffraction efficiency into the first diffraction order of the
grating. This efficiency is very sensitive to polarization, so most manufactures provide
different data for the two polarization states. We are interested in s-polarization which
transmitted through the Brewster window without losses. Here we need to be careful,
because the definition of the polarization can easily lead to great confusion. We usually
define s- and p-polarized light as light with electric field vectors that are perpendicular
and parallel to the plane of incidence, respectively. Grating manufactures often define S-
and P-polarized light as light with perpendicular and parallel electric field vectors, with
respect to the grating groves. I used small and capital letters to distinguish between them,
but when looking for gratings one should always check which convention is used. It is not
always easy to tell what the correct amount of feedback should be. The gratings used in
Ref. [37] provide feedback in the range between 16% and 25%. Too high feedback limits
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the output power of the laser, but too low feedback leads to a dominant internal resonator.
Sometimes, an upper limit is set by the LD itself. In case of the NDBA116T from Nichia,
the datasheet [40] provides an upper limit of 30% feedback, because higher feedback would
damage the front facet of the LD. For an AR coated LD, a feedback in the range between
15% and 30% should be a good choice. For a laser diode without AR coating, we should
consider to increase feedback.

6.3 Construction

The construction of the Littrow laser is already well documented with assembly pictures
on the Steck Lab webpage [41]. Here I want to give general assembly tips and report on
slight changes that we performed. Moreover, shortly after I built my laser I supervised the
construction of a second laser for 698 nm. Lukas Homeier joined our group as a Bachelor
student to write his Bachelor thesis [42] on the construction of a Littrow laser. In his thesis
he also describes every construction step.

Throughout the entire construction phase, participants should wear gloves to avoid
any contamination. This precaution can potentially eliminate a problem that happened in
another lab that built a Littrow laser using the same design. Within two months, the laser
became contaminated with a thin layer on the grating. The grating was no longer able
to provide the desired feedback and therefore had to be exchanged. Although the exact
cause of the contamination in the other lab was never determined, we should be especially
careful to keep the interior of the laser clean.

6.3.1 Assembling tips

Prior to assembling, all the parts underwent the same cleaning procedure as described in
section 4.3.1, except that we did not bake the parts. For gluing all the different parts,
we used Torr Seal instead of Epo-Tek 353ND. Torr Seal is also suitable for most vacuum
applications, but in contrast to Epo-Tek 353ND, Torr Seal cures at room temperature and
has a high viscosity. We took care to not close up the laser before the glue completely dried.
With this method we hoped to avoid any contamination by an evaporating component of
the glue. Also we tried to limit the total amount of glue. Usually already small amounts of
glue are enough to keep the parts in place. The thermistor was the only element that was
glued with EPO-TEK H77, because we wanted to ensure a good thermal contact between
the thermistor and the laser head.

When stripping the Kapton wires one should be careful where the Kapton flakes land.
They like to stick to the wire, so I recommend to clean off every wire before closing the
laser. Especially the wires lying above the Brewester window should be carefully cleaned,
because Kapton flakes landing on the window could distort the beam.

When placing the grating, it is very helpful to have a second assisting person who holds
the laser block such that one can slide the grating onto the grating arm. Otherwise it can
easily happen that the grating falls over on the grating side and gets damaged.
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We realized that screwing the top part to the laser body influenced the performance
of the laser. We attribute this effect to wires inside the cavity that are moveable. Their
movement is transferred to the laser diode and may change the alignment. A solution could
be to glue the wires at fixed positions to the laser body, which stabilizes the wire positions.
The top part of the laser body features an extrusion at the position where the laser head
sits to avoid touching the cables. In future designs we should enlarge this extrusion such
that it stretches over the whole interior.
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Conclusion

7.1 Summary

I built an ultrastable frequency reference housing which provides a < 1 mK temperature
stable environment. The characteristic cooling time of the actively temperature stabilized
part was measured to be 20.6 h, which indicates a high decoupling from external temper-
ature fluctuations. Moreover, the housing provides good vibration isolation. All of the
components used inside are vacuum compatible, so we could achieve a pressure stability of
10−8 mbar measured over a period of 24 h.

It became apparent that one or more of the components used inside the housing caused
a contamination of the resonator mirrors. The contamination resulted in a loss in finesse
of the resonator to a level which was too low to achieve a laser linewidth in the Hz range.
With new mirrors we found that the loss in finesse happens as soon as the heating tapes are
turned on. We concluded that three components were potentially responsible for the loss
in finesse: the glue, the Kapton heating tapes or the Teflon insulated wires that came with
the heating tapes. Each of these components should be replaced in future cavity housing
designs.

The current finesse was measured with several ring-down measurements and determined
to be ∼ 270 000. We left the heating elements turned off so as not to ruin the finesse again.
Observing the finesse for a period of two weeks did not reveal a change in finesse. We
conclude that the contamination of the mirror only happens when the heaters are turned
on.

The 689 nm laser could be locked to the ultrastable cavity, using an commercial loop
filter. The resulting lock is stable against vibrations and lasts for several hours. With the
commercial loop filter we achieved a bandwidth of 1.2 MHz.

With the Littrow laser design, we provide a complete set of instructions and compo-
nents that allows the construction of similar lasers for a variety of wavelengths. With
the instructions, the laser is easy to set up and serves as a fast and cheap alternative to
commercial diode lasers.
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7.2 Outlook

At the moment it is not possible to actively temperature stabilize the frequency reference
housing without risking to ruin the cavity mirrors again. Without the temperature stabi-
lization to the zero crossing temperature it will not be possible to stabilize the laser against
frequency drifts which are induced by thermal changes in the cavity. As a consequence, it
is necessary to build a second ultrastable cavity. Alternatively, we could replace the tem-
perature stabilized copper box. In either case, we should try to reduce the total amount
of synthetic material inside the vacuum chamber and use a different glue. Here is a list of
possible alternatives:

• Glue: Torr Seal does not have as good thermal properties but should work without
contaminating the mirrors.

• Heating elements: thermoelectric elements do not contain polymers. They have the
additional advantage to work either as heating or cooling elements depending on the
sign of the applied currant.

• Viton seals: we had to use Viton gaskets and O-rings because aluminum is too soft
to use copper gaskets. An alternative would be to use indium seals. Indium is softer
than aluminum and a bare wire between two aluminum surfaces would serve as a
very good seal. In contrast to Viton gaskets, noble gases can not penetrate through
a metal, which results in a better vacuum.

• Kapton insulated wires: instead of insulated wires we could use bare wires which we
insulate with ceramic beads.

The inclusion of a second ultra stable frequency reference would have several advan-
tages. Firstly, we could compare the two references to each other. Therefore we lock two
different lasers to each of the cavities and then look at their beat note signal, from which we
can infer a reliable value for the laser linewidth. As a second advantage, we could measure
the zero crossing temperature of each cavity. Stable Laser Systems provided us with a
measurement of the zero crossing temperature of our cavity spacer, but the measurement
was done with another pair of mirrors. The zero crossing temperature also depends on the
CTE of the Mirrors, because mirrors with a different CTE then the spacer material can
shift the zero crossing temperature. Although our mirrors are made of ULE glass we should
remeasure the zero crossing temperature, because the CTE of ULE spacer or substrates
depends also on the batch of ULE glass from which they were made [43].

A review of the project is only complete when it includes the successes and failures we
experienced. I had to leave before the locking of the 698 nm laser was achieved. All the
optics were set up, but there was not enough time to achieve the lock. The acoustic shield
around the chamber was under construction, so it could not be installed and tested. The
construction of the Littrow laser for 632.8 nm was completed and the laser worked, but its
linewidth is not yet characterized. Furthermore, the mode-hop free tuning range has to be
optimized.
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This master thesis summarizes my projects and what I have learned. The goal of this
thesis is to serve as a reference for future projects that include the ultra stable reference
cavity or a Littrow laser that was built with the above described design.
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C. Lisdat, “Transportable optical lattice clock with 7×10−17 uncertainty,” Phys. Rev.
Lett., vol. 118, p. 073601, 2017. DOI: 10.1103/PhysRevLett.118.073601.



BIBLIOGRAPHY 75
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